
2 CLUSTERWORLD volume 2 no 9 3volume 2 no 9 CLUSTERWORLD

GridFTP is a protocol that provides
support for the secure, fast, efficient,
and robust transport of data. e pro-
tocol currently holds the status of a
Global Grid Forum recommendation
(GFD.). One of the most common
implementations of the GridFTP pro-
tocol is provided in the Globus Tool-
kit™, available from the Globus Alli-
ance, an open source project with a
very liberal license. e most current
version of the toolkit is V..

e GridFTP protocol builds on
three IETF RFCs: RFC  provides
the base FTP protocol, RFC 
provides a mechanism for adding
security via the GSS-API, and RFC
 provides a feature negotiation
mechanism and an OPTS command
to set options for other commands.
GridFTP also builds on an IETF draft
from the FTP working group that
provides functions to get the file size
and modification time, restart ca-
pabilities to stream mode transfers,
and structured directory listings. To
these IETF features GridFTP adds
support for a new mode (extended
block mode, or MODE E), which al-
lows out-of-order data reception,
thereby enabling multiple data paths
for speed and efficiency. e SPOR
and SPAS (striped PORT and striped
PASV) commands allow for the re-
turn of multiple IP addresses. ese,
in conjunction with MODE E, en-
able multiple hosts to participate in
the transfer of a single file, so that
performance greater than a single
machine can achieve is possible. Re-
start markers for robust error recov-
ery in MODE E are provided, as are
commands to allow the data chan-
nel to be secured. Other new com-
mands allow for processing of the
data at the server (we implement
partial file transfers with this mech-

Maximizing Your Globus Toolkit™ GridFTP Server
anism). Moreover, and of particu-
lar relevance to the subject at hand,
GridFTP includes a mechanism for
setting the TCP buffer sizes, both
manually and automatically.

Despite the numerous features
GridFTP provides, a common atti-
tude is: “Yes, security is important,
and it’s cool that I don’t have to start
from scratch if the transfer fails, and
the other features are great, but how
do I make it go FAST?” We address
this question here.

How Fast Is Fast Enough?
Whether troubleshooting or try-
ing to define features and specifica-
tions for future versions of GridFTP,
we find it frustrating to hear, “I want
to go as fast as possible.” Fine; then
buy a dedicated  gigabit Ethernet
(GigE) link from your desk to the
destination you want to reach; in-
stall a fast storage attached network
(SAN); get the biggest machine pos-
sible; buy a  GigE network inter-
face card (NIC); rack up a debt larger
than many small nations; and you
can go as fast as possible. On the
other hand, if you say, “My applica-
tion needs to move X amount of data
in Y amount of time,” then you can
calculate your bandwidth require-
ments. Yes, X and Y may be arbitrary,
but at least they are based on some
data. Or you may simply want to run
at whatever is considered “normal”
or “reasonable” performance, getting
kind of bandwidth other sites similar
to yours are achieving. If you want to
get  Mbs (Megabits per second)
disk to disk, over a GigE link, that’s
possible with the right hardware. If
you want  Mbs, you are going to
have to work at it. If you want +
Mbs, it is not likely to happen over
your LAN, let alone in the wide area

(see the discussion on TCP for an ex-
planation). e bottom line is: Know
what you are shooting for, and have
a reason for it. It will help you make
decisions later on.

The Weakest Link
In a BBC TV game show, people must
answer tricky questions; at the end
of each round, one of the contes-
tants is voted off, and a woman with
a nasal voice proclaims, “You are the
weakest link ... GOODBYE.” Well,
a large part of making GridFTP go
fast is basically engineering to say
“Goodbye” to the weakest link in
your hardware chain. Let us state the
painfully obvious: Your performance
is only as good as the slowest compo-
nent. Unfortunately, it is not always
obvious which component that is.

In the next section, we review
the various hardware subsystems
and look at the impact each has
on the performance of a GridFTP
server. While this article is specifi-
cally about the Globus Toolkit V.
GridFTP server, the hardware dis-
cussion should apply equally well to
any bulk data transport application.

The Disk Subsystem
Disk is one of the most commonly
overlooked culprits of poor perfor-
mance in a GridFTP server. We reg-
ularly get mail complaining about
poor performance, and we’ve noticed
that one magic number pops up a
lot:  Mbs. Our normal response
in such cases is, “You wouldn’t hap-
pen to be running a single IDE disk
on the machine, would you?” You
see, you can have screaming CPUs, a
fast network, and all that other stuff,
but performance is about moving
data from a file on one disk to a file
on another disk. If your typical IDE

On the Grid     

2 CLUSTERWORLD volume 2 no 9 3volume 2 no 9 CLUSTERWORLD

On the Grid

disk subsystem is limited to about 
MB/s (MegaBytes per second), then
that is the best performance you are
going to get. So, what to do?

e answer is RAID. For those
not familiar with the term, it stands
for Redundant Array of Inexpensive
Disk. e Web is replete with refer-
ences on RAID, and there are numer-
ous books on the subject, but the ba-
sic concept is straightforward. When
you write to a disk, you write a series
of “blocks” of data. In RAID, you take
multiples of these disks; make them
look like one big disk; and then, when
you write this series of blocks, you tell
the first drive to write the first block,
the second drive to write the second
block, and so on. e idea is that if
you have enough drives, by the time
you get back around to the first drive,
it should be done writing its block
and be waiting for the next one. is
strategy allows much higher disk I/O
rates than a single drive can achieve.
Technically, this is called RAID ,
or striping. ere are other levels of
RAID, the most common being RAID
, which adds redundancy, so that one
of the drives can fail without losing
data. How that works is beyond the
scope of this article. Simply be aware
that redundancy is gained at the cost
of speed and additional disks. As
someone once said, “Price, speed, ro-
bustness: pick any two.”

Various RAID solutions are avail-
able. Linux includes something called
software RAID, in which basically
all of the RAID functionality is ex-
ecuted on the host CPU in software.
is approach has the advantage of
being cheap (the costs are disks and
your time), but it can be quite CPU-
intensive. One of the hosts on which
we work has four (expensive) K
RPM SCSI disks with Linux software
RAID, and we achieve about  MB/
s sequential read Performance — at
the cost of  percent CPU utiliza-
tion on a  GHz Pentium III. e al-
ternative to software RAID is ... you

guessed it, hardware RAID. In this
case, all of the work of controlling
the disks is handled by specialized
hardware installed in the host. Some
hosts actually include HW RAID sup-
port on board. For example, we have
a set of clusters based on Compaq
DLGs that have on board HW
RAID. Each node contains six  GB
K RPM SCSI disks, and we achieve
about  MB/s sequential read per-
formance with only  percent CPU
utilization on a . GHz Pentium
III. e early RAID solutions all in-
volved SCSI disks. Recently, howev-
er, controllers for non-SCSI drives
have been making inroads into the
traditionally SCSI-dominated world.
Controllers are also available for IDE
disks. ese have the advantage of
using the cheapest disks, but they
tend to have the lowest performance.
Serial ATA, or SATA RAID, is rap-
idly gaining in popularity, and SATA
RAID controllers are available from
a number of different vendors. ey
provide a nice compromise between
cost and performance.

But what if you don’t have space
or money for more drives? How
can you improve the performance
of your current disk drive? e fol-
lowing tips and tricks are taken
primarily from the system tun-
ing guides found at Red Hat and
Linux.com. URLs are provided in
the resources sidebar.

Tune the file system by adjust-
ing the bdflush parameters:

echo 100 5000 640 2560 150 30000 \

 5000 1884 2 > /proc/sys/vm/ \

 bdflush

e cited parameters are recom-
mended for file servers. However,
you should check the parameter de-
scription and run tests to see what
parameters work best for you. Also,
disabling the access time updates
on the filesystem will speed disk ac-
cesses. is setting is less of an is-

sue if you move a few large files, but
if the server has other applications
that do many disk access, this can
have an effect. Simply add the no-
atime option to /etc/fstab :

/dev/rd/c0d0p3 /test \

 ext2 noatime 1 2

Linux . also allows you to trade
disk throughput for latency, and
vice versa, by adjusting the disk I/O
elevators. Larger numbers generally
mean more throughput but high-
er latency. You make these adjust-
ments with the elvtune command:

/sbin/elvtune -r <sectors> \

 -w <sectors> /dev/hda1

You can determine the current set-
tings via:

/sbin/elvtune /dev/hda1

Again, you need to experiment to de-
termine which parameters are best
for your site. Finally, if you are us-
ing only one partition on your disk
drive, most modern disks can ac-
cess some sectors faster than others.
Usually, this is the lower numbered
sectors — namely, the first partition
defined, but not always. e bon-
nie++ disk performance benchmark
has a test to determine which sectors
are fastest. Picking the fastest parti-
tion for your data can help improve
your server performance.

In summary, if disk is your
bottleneck, a few tweaks to Linux
might gain you some performance
on GridFTP (at the potential cost
of hurting latency-critical applica-
tions). But for the most part, it is
a question of money — money for
more disks and, potentially, money
for more processing power, in the
form of faster CPUs for software
RAID or custom ASICs on a hard-
ware RAID controller. On the other
hand, a few hundred dollars of disks

4 CLUSTERWORLD volume 2 no 9 5volume 2 no 9 CLUSTERWORLD

On the Grid

and software RAID should give you
a substantial performance boost,
and a few thousand dollars should
provide you TB+ of disk space on
a hardware RAID controller that is
fast enough to keep up with the per-
formance you can achieve on a giga-
bit Ethernet link. We note, howev-
er, one important caution with HW
RAID. e quality of the control-
lers varies widely, and the perfor-
mance can depend on the combina-
tion of controller and motherboard.
e performance numbers that you
are quoted will tend to be the best
possible under the best possible cir-
cumstance, and you are not likely to
match them, so doing some testing
with a loaner is a good idea.

Other, more expensive solutions
to this problem do exist. Direct at-
tached storage (DAS) boxes, for ex-
ample, use fiber channel to connect
large numbers of RAIDed disks ( is
common). ese external DAS box-
es typically cost , to ,,
depending on the number of disks.
ere are also SAN solutions (a SAN
looks like a block device but is net-
work attached), and Network At-
tached Storage (NAS) solutions (a
NAS is a file serving device). Howev-
er, installing these devices is usually
a significant engineering task, often
done for a site or entire department;
it costs tens or even hundreds of
thousands of dollars and thus seems
a little extreme just to make your
GridFTP server run faster.

CPU Speed
Current dual-processor, multi-GHz
CPUs should have plenty of pow-
er to drive a GridFTP server. Older
machines, however, may end up be-
ing CPU bound, particularly if they
are running SW RAID. As a rule of
thumb, a GridFTP server will con-
sume the equivalent of a dual pro-
cessor  GHz Pentium III machine if
you are running SW RAID. Basically,
one CPU drives the disks, and one

drives the GigE NIC. It is critical to
remember that the CPU is servicing
a lot of interrupts when you are try-
ing to move data that fast. We have
not yet tried running GridFTP with a
 GigE NIC, but it is almost a guar-
antee that either the disk or the CPU
will be the bottleneck. Note, too,
that no cycles are left for other pro-
cessing. In general, if you really want
good GridFTP performance, the box
should be dedicated to GridFTP. Be-
sides avoiding context switches, it al-
lows you to tune certain system pa-
rameters that might have a negative
impact on other applications (such as
MPI-based programs).

The Network
If you have a  Mbs NIC in your
host, the best you will get is  Mbs.
at seems Obvious, doesn’t it? Giga-
bit Ethernet NICs are readily available,
and many (most?) machines now come
standard with them. If you are using
an add-in card, however, you should
be aware that because of HW tim-
ing-related issues, certain NICs work
better with some motherboards than
with others, so testing an evaluation
unit is worthwhile, or simply swap-
ping out your current controller for a
new one might buy you some perfor-
mance. ough today it’s less of a prob-
lem than it used to be, some NICs do
not auto-sense correctly and need to
be forced into full duplex mode. How
to do this varies, and you will need
to check the documentation for your
NIC. Also, keep in mind that process-
ing an interrupt every time a packet
arrives on a GigE NIC can consume a
lot of CPU and hurt your performance.
Interrupt coalescing, that is, hav-
ing the NIC wait some period of time
before issuing the interrupt to see
whether another packet arrives, can
have a significant impact on bulk data
transport. It can also have a significant
negative impact on applications such
as MPI that are latency critical. Again,
you need to read the documentation to

see how to adjust this (if it can be ad-
justed at all) and test with your system
to see what the right balance is.

Unfortunately, you can have a
fast machine, fast disk, lots of RAM,
GigE NIC, everything tweaked, con-
nected to a fast network — and still
not achieve decent performance. e
reason is an insidious problem, of-
ten hidden in the network, called
the “last mile” problem. is situa-
tion is another example of our weak-
est link metaphor. Specifically, the
ultra-fast network to which you are
attached is not plugged directly into
your GigE NIC. ere is your inter-
nal corporate or campus infrastruc-
ture to think about. Many network-
ing people either don’t know about
this or are so hurried they don’t take
the time to understand your prob-
lem and give you an accurate expla-
nation. For instance, if you ask your
network folks, “What is the slowest
link in the path from my desktop to
host x.someotherdomain.edu?” the
answer you may get back is “mini-
mum GigE all the way.” Technically,
that may be right. However, if that
GigE path happens to include a GigE
hub (multiple GigE connections in,
but only one GigE out), or if the entire
campus traffic is sharing the same
GigE backbone, you are not going to
get gigabit speeds.

If you are interested in the per-
formance of your GridFTP transfers,
then your network connection is a
critical component. It is worth the
time to sit down with your network-
ing people, explain what you are do-
ing, and get a detailed explanation
of every piece of hardware you pass
through from your NIC to the exit
router. (Note that if you run to mul-
tiple places, you could take multiple
different paths, even within your
facility.) What is its capacity? How
much is it shared? What is the typi-
cal utilization, peak utilization, and
so on? ese are questions to seed
the conversation. Unless you are in-

4 CLUSTERWORLD volume 2 no 9 5volume 2 no 9 CLUSTERWORLD

timately involved with networking,
you probably don’t know all the right
questions to ask. Get your network-
ing people involved. Get them to un-
derstand what you need to do, with
realistic expectations (see “How Fast
Is Fast Enough,” above). en, not
only can they tell you what you have
today, but they may be able to sim-
ply switch some things around in
the wiring closet and help you out.
If not, they can help you plan for the
infrastructure changes necessary to
meet your goals.

Firewalls
Firewalls are not evil. People are
sometimes evil, and we use firewalls
to keep such people from intruding
on our peace and harmony. at be-
ing said, when it comes to network
performance, firewalls are ugly. Be-
cause they must inspect every packet,
they tend to slow the traffic. Limits of
a few hundred megabits are not un-
common, although modern firewalls
are purported to be able to keep up
with GigE flows (we have not tested
this for ourselves). Find out wheth-
er you have a firewall. If so, check to
see whether there is a way to get TCP
streams through without being pro-
cessed by the firewall. If not, you are
pretty much stuck. Note that since
the Globus Toolkit implementation of
GridFTP defaults to data channel au-
thentication, and you can control the
range of ports used via the GLOBUS_
TCP_PORT_RANGE environment
variable, opening holes in the firewall
is less of a security risk than it might
be for other applications.

TCP Buffer Size
TCP guarantees the application reli-
able, in-order reception of the data.
When an application calls write()
on a socket, and it returns, this indi-
cates that the data has been trans-
ferred to a buffer in the kernel, not
that it has been received at the other
end. e kernel has to hold a copy of

all the data that is sent out over the
network until it receives an acknowl-
edgment from the other side that it
has received that data. is behav-
ior is because the network may drop
that packet, which then may need to
be retransmitted. e size of the buf-
fer that the data is held in pending
acknowledgment controls the maxi-
mum bandwidth achievable. A finite
amount of time is required for a pack-
et to travel to its destination and its
acknowledgment to return. is in-
crement is called the round-trip time
(RTT). e RTT in your LAN is proba-
bly less than  ms. e RTT from Chi-
cago to the West Coast is on the order
of - ms, and Chicago to Amster-
dam is around  ms. To make the
math easy, assume you can transmit
 packet per ms. In your LAN, you
would need room for only one packet
because the acknowledgment would
have arrived before you transmit-
ted the next packet. For a West Coast
transfer, you would need space for
 or  packets; for Amsterdam, ap-
proximately . If you had space for
only  packets and were trying to
send to Amsterdam, you could trans-
mit  packets but then would have
to wait for an acknowledgment of the
first packet before you could send the
st, and so on. So, in order to be sure
you can achieve your desired band-
width, you need to make sure the TCP
buffer is big enough. To calculate the
size of the buffer, you need to multi-
ply the desired bandwidth times the
RTT (with appropriate units conver-
sions). is is called the bandwidth
delay product. A simple equation is

Buffer size (KB) =
 Bandwidth (Mbs) *
 RTT (ms) / 8

is equation assumes that kilo
and mega are based on , rather
than . In globus-url-copy,
the TCP buffer size is set via the -
tcp-bs command line option. Note

that in the discussion of parallel
streams below, we adjust this cal-
culation to account for the fact that
the bandwidth is divided across
multiple streams.

You also need to make sure that
Linux is configured to allow the buf-
fer size you request. If you request a
buffer size larger than is available,
it is not an error; you simply get the
largest allowed. To increase the ab-
solute buffer limits, add the follow-
ing to /etc/sysctl.conf :

net.core.rmem_max =

 <max read buffer size (bytes)>

net.core.wmem_max =

 <max write buffer size (bytes)>

net.core.rmem_default =

 <default read buffer size

 (bytes)>

net.core.wmem_default =

 <default write buffer size

 (bytes)>

To increase the auto-tuning limits,
add:

net.ipv4.tcp_rmem = <min>

 <default> <max>

net.ipv4.tcp_wmem = <min>

 <default> <max>

net.ipv4.tcp_mem = <min>

 <default> <max>

Note that the first two are in bytes
but the last is in pages. For more
detail, see the Berkeley TCP tuning
guide listed in the resources.

Parallelism
Parallelism means that there are
multiple TCP connections, rather
than one. Data is sent as fast as pos-
sible down each stream, with the
fastest streams getting the most
data. is strategy works well in
light to moderate congestion over
high-latency networks. How many
streams to use is environment de-
pendent, but four seems to be a good
rule of thumb. Parallelism won’t

On the Grid

6 CLUSTERWORLD volume 2 no 9 7volume 2 no 9 CLUSTERWORLD

help on a LAN (low latency); and
if you are lucky enough to be on a
WAN that is not dropping any pack-
ets (not likely), it won’t help you ei-
ther. Since you are using multiple
channels, your bandwidth is divided
across them, so each stream only
needs a buffer big enough for the
bandwidth it will carry. As a rule of
thumb, I suggest you calculate the
buffer size as above and then di-
vide by n-, where n is the number
of streams. e “-” accounts for the
fact that some streams may be faster
than others, and this will keep the
buffer size from limiting the band-
width. e reason for not using the
full buffer size is that if you have
large buffers ( MB is necessary for
GigE from Chicago to Amsterdam)
and many streams, you can run the
system out of memory. For instance,
in the  MB example,  streams
would use nearly half the memory on
a host with  MB of RAM.

Why does this work in such a way?
In brief, when there is too much traf-
fic on the net, the routers drop pack-
ets. When TCP sees that it has lost a
packet (i.e., it believes there is conges-
tion), it responds by cutting its band-
width in half. By dividing the band-
width across multiple streams, you
lessen the impact of a lost packet. For
instance, if you were running at a full
gigabit,  Mbs, a lost packet would
slow you down  Mbs. However, if
you had that  Mbs divided across
 streams ( Mbs each) and if one of
those streams lost a packet, you would
slow down only  Mbs. Note that
if you are in a heavily congested net-
work, and you start dropping packets
on many or all of your streams, you
may actually get lower performance
because of the overhead of managing
multiple streams. For more details,
check one of the references.

 Send Stalls
Dropped packets are not the only
way bandwidth can be cut drastical-

ly. e network interface card (NIC)
has an input queue. If it becomes
full, Linux treats this as a conges-
tion event (equivalent to a dropped
packet), and you lose half your
bandwidth. e conventional expla-
nation is that if that the network
is slow, but today’s fast CPUs can
overflow the default queue length
quite easily. To avoid this problem,
increase the size of your queue by
issuing the following command:

ifconfig eth<N> txqueuelen

 <new queue size>

What to use for your queue size de-
pends on your system, but try 
and work up from there.

Route Caching
Let’s say someone down the hall was
transferring a big file to a remote site
with which you also work. While do-
ing so, a packet was dropped. Shortly
thereafter, you decide to move a big
file to that same remote domain.
Guess what? You don’t even get the
privilege of trying to drop a packet.
Linux remembers that there was con-
gestion on that link and puts you into
congestion avoidance right from the
start. Never mind that network traf-
fic is dynamic, so what happened two
minutes ago is absolutely no predic-
tion about what is happening now.
Never mind that you may not be tak-
ing the same route to that destina-
tion. So what can you do? If you can
become root, you can:

echo 1 > /proc/sys/net/ipv4/

 route/flush

Channel Caching
Channel caching and its impact on
performance will be mentioned only
briefly here. In a subsequent arti-
cle on developing with the Globus
GridFTP client library, we will discuss
this in more detail and show how to

implement channel caching. By de-
fault, each call to the Globus GridFTP
client library is completely self-con-
tained. It establishes a control chan-
nel connection, sends the necessary
commands, and then closes the ses-
sion. If you are going to be repeatedly
moving files from the same location
this process gets expensive, since ev-
ery connection involves a delegation
(public/private key pair generation,
a computationally expensive opera-
tion). e alternative is to set an at-
tribute so that the channels are left
open. If the next command uses the
same source, destination, and creden-
tials, then the existing (cached) chan-
nel is used. is attribute can make
a dramatic difference when transfer-
ring many, particularly small, files be-
tween the same source and destina-
tion. Note that in the Globus Toolkit
V., the command line client provid-
ed, called globus-url-copy, now
supports moving multiple files with
a single invocation via file globbing
(*.dat) and directory moves. e
globus-url-copy client automati-
cally employs channel caching where
it makes sense.

File Size
File size can have a huge impact on
the performance of GridFTP. Con-
sider two scenarios. Both involve
moving  TB of data. However, one
scenario involves a single  TB file,
whereas the other scenario has the
same  TB in ,, files each
MB in length. Clearly, the one large
file scenario will be faster than the
,,-file scenario. e obvi-
ous factor is that there is only a single
window open and you send data until
the file is done. In the many-file sce-
nario, a number of things hurt per-
formance. First, you break the “pipe-
line” each time a file ends, since you
have to wait for the first command to
complete before you can initiate the
next file transfer. Second, depend-
ing on the TCP implementation and

On the Grid

6 CLUSTERWORLD volume 2 no 9 7volume 2 no 9 CLUSTERWORLD

Resources
Linux RAID How-To
• www.tldp.org/HOWTO/HOWTO-INDEX/os.html#OSRAID
Linux System Tuning Guide
• people.redhat.com/alikins/system_tuning.html
Linux.com Performance Guide
• howtos.linux.com/guides/solrhe/Securing-Optimizing-Linux-RH-

Edition- v1.3/chap6sec68.shtml
LBNL TCP Tuning Guide
• www-didc.lbl.gov/TCP-tuning/buffers.html
Globus Web Site
• www.globus.org
GridFTP Protocol Specification
• www.ggf.org/documents/GWD-R/GFD-R.020.pdf
Bonnie++ Disk Performance Benchmark
• www.coker.com.au/bonnie++

configuration, after a single round-
trip time with no data moving, TCP
may close the congestion window,
forcing you into slow start again and
hurting the bandwidth. If channel
caching (see above) is not employed,
the performance hit is disastrous be-
cause, in our scenario, there would be
,, delegations performed. If
you have control over the file size, re-
member: For data transport, bigger is
better. If you don’t have control over
it, there is very little you can do other
than ensure channel caching is used.

Summary
e key to getting good performance
out of GridFTP involves two basic
components. First, you have to do ba-
sic system engineering. Any good en-
gineering starts with a set of specs or,
in other words, a design target. Usu-
ally, this will be a sustained bandwidth
you want to achieve between two sites.
Once you have that, you have to have
the right hardware in place to achieve
your goals. To achieve decent per-
formance on a gigabit Ethernet link,
you need a minimum dual-processor
 GHz Pentium III or the equivalent
(rarely a problem these days), RAIDed
disks, and a GigE NIC. Some hardware
works better together than others, so
test before you buy. Also, sit down and
have a heart-to-heart talk with your
networking folks. Make sure they un-
derstand what you are trying to ac-
complish, and get them to explain ev-
ery single piece of hardware between
you and the exit router. Look for links
that are simply too slow (your GigE
connection gets routed over a  Mbs
segment at some point) or that are
shared (your department has a  port
GigE hub: that is,  GigE connections
go in, but only one comes out).

Once you have the right system in
place, you have to make sure it is con-
figured correctly so you don’t prevent
it from doing its job. You will need to
balance the constraints of the various
applications, but if this is a dedicated

GridFTP host, tuned for maximum
throughput, latency is not an issue.
Tweak the file system and TCP system
settings, and then make sure your cli-
ent takes advantage of it, particularly
the TCP buffer settings. If you want
high performance, never use the de-
fault buffer sizes: set them yourself.
e TCP auto buffer tuning will get
you much better performance than
simply using the default, but hand-
tuned buffers will generally outper-
form auto-tuned buffers.

If you do all those things, you
should be able to get decent per-
formance. What’s “decent perfor-
mance”? Remember in school how
nice it was to have the answers to
your homework so you could check
to see whether you had done it right?
System checking is a lot harder, but
if you want ballpark numbers to
compare against, try this: On a 
Mbs link, you should be able to get
between  and  Mbs on a lightly
loaded link. Getting gigabit speeds
is harder, but as a rule of thumb, 
Mbs should be pretty easy to get, and
 or  Mbs is achievable. Again,
let use stress that as the load on
the network (more packet loss) and
the distance you cover (latency) in-
crease, either your bandwidth tends

to decrease, or the effort required to
achieve a given bandwidth increases.

Good luck, and have at it!

Globus Toolkit is a registered trademark
held by the University of Chicago.

is work was supported in part by the
Mathematical, Information, and Compu-
tational Sciences Division subprogram of
the Office of Advanced Scientific Com-
puting Research, Office of Science, U.S.
Department of Energy, under Contract
W---ENG- and under Contract
DE-AC-SF with the Univer-
sity of California; by the National Science
Foundation; by the NASA Information
Power Grid program; and by IBM.

Bill Allcock is the Technology Coordinator
for GridFTP at Argonne National Labora-
tory and is a member of the Globus Alli-
ance. His work centers on data-intensive
applications, particularly transport and
management of large datasets.

John Bresnahan is a senior scientific
programmer with the Mathematics and
Computer Science Division at Argonne
National Laboratory, where he works with
the Globus Alliance as a member of the
GridFTP team, designing and implement-
ing data transfer protocols for the Grid.

On the Grid

