
IST-2001-32603
Deliverable D2.3.3-bis1

Project Number: IST-2001-32603

Project Title: 6NET

CEC Deliverable Number: 32603/WWU(JOIN)/DS/233/A1

Contractual Date of Delivery to the CEC: 31st December 2003

Actual Date of Delivery to the CEC: 15th March 2004 (v1.0)

Date of Latest Revision: 26th May 2004 (v1.0-bis1)

Title of Deliverable: Updated IPv4 to IPv6 transition cookbook for end site
networks/universities

Work package contributing to Deliverable: WP2

Type of Deliverable*: R

Deliverable Security Class**: PU

Editors: Christian Schild, Tina Strauf (WWU/JOIN),

Reviewer: Tim Chown (University of Southampton)

Version: 1.0-bis1

Contributors: Stig Venaas (UNINETT), Pekka Savola (CSC), Christian Strauf
(WWU/JOIN), Chris Edwards (ULanc), Martin Dunmore
(ULanc), Octavio Medina (ENST), Jérôme Durand RENATER),
Feico Dillema (Invenia), Kostas Koumantaros (GRNET),
Dimitrios Kalogeras (GRNET), Athanassios Liakopoulos
(GRNET), Thorsten Kersting (DFN), Michael Mackay (Ulanc),
Kamal Deep Singh (ENST), Tommi Saarinen (University Oulu),
Tim Chown, Nick Lamb (University of Southampton).

Abstract:

This is the third version of an IPv4 to IPv6 transition cookbook for end site networks and/or universities.
After an introduction to the basics of transitioning from IPv4 to IPv6 (which presently is generally done
by moving to dual-stack networking) and a brief description of each mechanism on a theoretical basis, we
give a description of some example scenarios to give the reader an idea of where and when to employ
certain transition methods and how different mechanisms work together and complement each other. The
next part of the document then focuses on installation and configuration examples. The deliverable is a
“living document” and as such will be updated and revised whenever there is new or different material
available , up until the point of the final version due in December 2004 (Deliverable D2.3.4). This version
is D2.3.3-bis1, the first update to D2.3.3.

Keywords: IPv4 to IPv6 transition, transition mechanisms, IPv6 site transition, dual-stack networking,
IPv6-only networking

IST-2001-32603
Deliverable D2.3.3-bis1

 2

Executive Summary
As IPv6 grows in maturity in terms of standards and implementations, and as understanding of its
benefits grow, deployments, both pilot and production, will also increase in number.

Within the 6NET project, many of the participants have already made a significant investment in
deploying early IPv6 services, mainly dual-stack, but a small number IPv6-only. In this document,
we present a cookbook of theory and practice for IPv6 site deployment.

The cookbook includes information on the theory of various transition methods that have been
proposed to date, as well as examples using popular IPv6 operating systems such as FreeBSD,
Linux, Solaris and Windows and router platforms such as Cisco IOS, Juniper JunOS and Zebra.

This cookbook will be updated as and when major new material is added during 2004, and then be
replaced by a subsequent, more complete and final Deliverable (D2.3.4) in December 2004. This
current update is D2.3.3-bis1 (first update). The final version will also include more detailed
migration scenarios/reports (including case studies that are being undertaken jointly with the
Euro6IX project), which this version cannot yet present, as well as a more comprehensive list of
implementations.

This document contains little to no coverage on routing issues and the tasks one needs to perform to
set up a network with internal or external routing protocols. The reader is instead referred to D3.1.2,
where these issues are addressed and covered in detail (e.g. considerations for us ing IS-IS for IPv4
and IPv6).

The authors welcome input on this cookbook, which should be directed to the principal editors of
this document (join@uni-muenster.de).

IST-2001-32603
Deliverable D2.3.3-bis1

 3

Table of Contents

1. INTRODUCTION.. 8

1.1. DOCUMENT UPDATE.. 9

2. GENERAL OVERVIEW.. 10

2.1. DUAL STACK... 10
2.2. ADDITIONAL IPV6 INFRASTRUCTURE.. 11
2.3. IPV6-ONLY NETWORKS... 11

3. DESCRIPTION OF TOOLS AND MECHANISMS.. 13

3.1. DUAL STACK... 13
3.1.1. Security Considerations for Dual-Stack Networks.. 13

3.2. IPV6 TUNNELING METHODS .. 13
3.2.1. Configured Tunnel ... 13
3.2.2. Tunnel Broker .. 15
3.2.3. Automatic Tunnels.. 16
3.2.4. 6to4... 16
3.2.5. 6over4... 18
3.2.6. ISATAP... 18
3.2.7. Teredo .. 19
3.2.8. Tunnel Setup Protocol (TSP) ... 20
3.2.9. DSTM ... 21
3.2.10. OpenVPN-based tunnelling solution.. 24

3.3. IPV6 TRANSLATION METHODS .. 25
3.3.1. SIIT, NAT-PT and NAPT-PT.. 25
3.3.2. BIS.. 27
3.3.3. BIA ... 28
3.3.4. Transport Relay.. 30
3.3.5. SOCKS ... 32
3.3.6. Application Layer Gateway (ALG).. 33

3.4. 6TALK ... 34

4. EXAMPLE SCENARIOS ... 35

4.1. CAMPUS IPV6 DEPLOYMENT (UNIVERSITY OF MÜNSTER, GERMANY)................................ 35
4.2. SMALL ACADEMIC DEPARTMENT, IPV6-ONLY (TROMSO, NORWAY)................................... 36
4.3. LARGE ACADEMIC DEPARTMENT SCENARIO (UNIVERSITY OF SOUTHAMPTON)................... 36

4.3.1. Systems Components.. 36
4.3.2. Transition status... 43
4.3.3. Next steps for the transition ... 44
4.3.4. IPv6 Transition Missing Requirements.. 44

4.4. UNIVERSITY DEPLOYMENT SCENARIO (LANCASTER UNIVERSITY) 45
4.4.1. Lancaster University IPv6 Address Allocation.. 45
4.4.2. Current Issues – IPv6 Addressing (6NET Feedback Summary)................................ 48
4.4.3. Lancaster University Fundamental IPv6 Service Support... 49

4.5. OTHER SCENARIOS .. 56
4.6. SUMMARY OF UNEXPECTED RESULTS AND UNFORESEEN DIFFICULTIES 57
4.7. SUMMARY OF TRADEOFFS MADE IN SOLUTIONS CHOSEN ... 57

IST-2001-32603
Deliverable D2.3.3-bis1

 4

5. CONFIGURATION EXAMPLES: DUAL-STACK... 57

5.1. DUAL-STACK VLANS... 58
5.1.1. Configuring an interface on a Linux host to become part of a VLAN....................... 58

6. CONFIGURATION EXAMPLES: IPV6 TUNNELING MECHANISMS........................ 58

6.1. MANUALLY CONFIGURED TUNNELS ... 58
6.1.1. Cisco IOS platform .. 58
6.1.2. Juniper (JunOS) ... 60
6.1.3. Extreme (ExtremeWare IPv6) .. 61
6.1.4. 6WIND (SixOS) .. 62
6.1.5. Windows XP ... 63
6.1.6. Windows 2000 .. 64
6.1.7. Linux... 64
6.1.8. Solaris 8 ... 65
6.1.9. FreeBSD, NetBSD and Darwin/Mac OS X .. 66

6.2. TUNNEL .. 68
6.2.1. OpenLDAP/ssh-based Tunnel Broker.. 68

6.3. 6OVER4 ... 69
6.3.1. Microsoft Implementations .. 69

6.4. 6TO4 ... 69
6.4.1. Cisco platform (as client and relay) .. 69
6.4.2. Extreme (ExtremeWare IPv6).. 70
6.4.3. Windows XP ... 71
6.4.4. Windows 2000 .. 71
6.4.5. Linux... 72
6.4.6. FreeBSD, NetBSD and Darwin/Mac OS X 6to4 Client.. 73
6.4.7. BSD with Zebra .. 74

6.5. ISATAP.. 75
6.5.1. Cisco IOS Platform (as Router/Server) ... 75
6.5.2. 6WIND (as router/server) .. 76
6.5.3. Windows XP host (as client) .. 77
6.5.4. .NET/Windows 2003 Server (as Client and Router/Server)....................................... 78
6.5.5. Linux (as Client and Router/Server) .. 79

6.6. OPENVPN TUNNEL BROKER .. 82
6.6.1. Definition of the term "tunnel broker".. 83
6.6.2. Tunnel Broker Clients.. 85
6.6.3. Installation of Tunnel Broker components... 86
6.6.4. Functionality of tunnel broker and its components... 90
6.6.5. Routing configuration .. 92
6.6.6. Sample server configuration .. 94
6.6.7. Sample subnet client configuration.. 96
6.6.8. Management... 98
6.6.9. Client user guide .. 100

6.7. DSTM... 101
6.7.1. A DSTM Experiment with FreeBSD 4.5 .. 101
6.7.2. DSTM usint TSP-SSL (in a VPN scenario) on FreeBSD... 104
6.7.3. Linux (RedHat 7.3, 8.0, 9.0)... 107

7. CONFIGURATION EXAMPLES: IPV6 TRANSLATION METHODS 110

IST-2001-32603
Deliverable D2.3.3-bis1

 5

7.1. NAT-PT ... 110
7.1.1. NAT-PT (RedHat 7.3) .. 110
7.1.2. Ultima (FreeBSD 4.5).. 111

7.2. ALG ... 113
7.2.1. WWWoffle... 113
7.2.2. WWW6to4 HTTP Proxy... 114
7.2.3. Postfix Configuration... 116
7.2.4. SMTP Relaying with Sendmail... 117
7.2.5. The totd DNS-Proxy (Linux/Unix)... 118

7.3. TRT.. 120
7.3.1. pTRTd and totd on a Linux router ... 120
7.3.2. NTPD Time Server as a Proxy... 122
7.3.3. The Faith TRT for FreeBSD and NetBSD.. 122

8. APPENDIX A -- AVAILABILITY OF TOOLS AND MECHANISMS........................... 125

8.1. CONFIGURED TUNNEL... 125
8.2. TUNNEL BROKER .. 125

8.2.1. OpenLDAP/ssh-based tunnel broker at University of Southampton. 125
8.2.2. IPv6tb (Tunnelbroker by CSELT/Telecom Lab Italia)... 125
8.2.3. OpenVPN-based tunnel broker at JOIN/University of Münster 125

8.3. AUTOMATIC TUNNELS .. 125
8.4. 6TO4 ... 126

8.4.1. Cisco IOS ... 126
8.4.2. ExtemeOS... 126
8.4.3. WindowsXP.. 126
8.4.4. Windows2000 ... 126
8.4.5. Linux... 126
8.4.6. *BSD/Mac OS X... 126

8.5. 6OVER4 ... 127
8.6. ISATAP.. 127

8.6.1. Cisco IOS ... 127
8.6.2. Windows... 127
8.6.3. BSD .. 127

8.7. TEREDO... 127
8.8. TUNNEL SETUP PROTOCOL (TSP) .. 128
8.9. DSTM... 128
8.10. TRT.. 128

9. APPENDIX B: ENABLING IPV6.. 129

9.1. MS WINDOWS XP .. 129
9.2. MS WINDOWS 2000.. 130
9.3. SUN WORKSTATION WITH SOLARIS 8.. 132
9.4. FREEBSD.. 132
9.5. REDHAT.. 133

10. APPENDIX C: SURVEY OF DEPLOYED TRANSITION TOOLS IN 6NET........... 135

10.1. TUNNELLING... 135
10.2. TRANSLATION ... 136
10.3. MULTICAST... 136

IST-2001-32603
Deliverable D2.3.3-bis1

 6

11. REFERENCES... 137

IST-2001-32603
Deliverable D2.3.3-bis1

 7

Table of Figures

Figure 3-1: Tunnel broker components and set-up procedure ... 15

Figure 3-2: 6to4 service overview ... 17

Figure 3-3: DSTM Architecture... 21

Figure 3-4: The BIS Protocol Stack ... 28

Figure 3-5: The BIA Protocol Stack .. 29

Figure 3-6: Transport Relay Translator in action .. 31

Figure 3-7: ALG Scenario .. 33

Figure 6-1: Test Network Infrastructure ... 101

Figure 9-1:Left: typical IP dual stack layers, right: Windows XP IP layer stack implementation.. 129

IST-2001-32603
Deliverable D2.3.3-bis1

 8

1. Introduction
IPv6 support is now widely available for all common host and router platforms. There are methods
readily available to configure and run IPv6 on a single host or within a small site.

With an IPv6 host or local network configured, getting connectivity to the global IPv6 Internet is
vital if you wish to communicate with other IPv6 systems. Today, this is usually accomplished
either natively or, more commonly, with the IPv6- in-IPv4 tunneling technique using either manual
or automatic tunnel configuration methods.

In this document, which is an update to [D2.3.2] we will describe configurations for single systems,
and how to plan the deployment of IPv6 in some example scenarios. The academic 6NET project
participants are, on the whole, fortunate enough to have native connectivity to their National
Research and Education Networks (NRENs) and from there to a globally connected native IPv6
network (spanning 6NET, GÉANT, and links to Abilene in the US and WIDE in Japan). Other
sites may not be so lucky; for them a tunneling mechanism is the only realistic option for IPv6
connectivity.

In [D2.3.1] we described the IPv6-only site deployment at Tromso. IPv6-only deployments are
rare, especially in Europe, but are an interesting exercise with a view to the end game of IPv6
deployment. However, the practical reality is that sites deploying IPv6 will not migrate to IPv6-
only, but transition to a state where they support both IPv4 and IPv6 (dual-stack). The dual-stack
environment then allows IPv6-only devices to be introduced, as a site slowly phases out IPv4. For
this reason, translation mechanisms between IPv4 and IPv6 systems are less frequently required;
however we discuss transition mechanisms, from view of the network, transport and application
layers at which translation may be applied.

Expanding IPv6 functionality from a small infrastructure to a large site network is a complex and
difficult venture. For a large site there are lots of different needs, and different conditions which
make it necessary to employ various transition mechanisms according to the peculiarities of, for
example, a given subnet, wireless or mobile environment or dial- in technology. In this cookbook we
want to explain in detail which potential options and techniques exist to integrate IPv6 into a site
network, which solution is appropriate for any special kind of network infrastructure and of course
how exactly one has to set up and configure these techniques. Where possible, we also point to
existing (current) problems and interoperability issues, for example in running IPv4 and IPv6 in
parallel or having IPv6-only hosts which still need to be able to communicate with IPv4-only hosts
on occasion. In the scenarios section, we describe the components identified for transition for a
medium sized academic network (1,500 users, up to 1,000 systems).

In this document we differentiate between three general ways of integrating IPv6 into a network,
namely dual-stack, IPv6- in-IPv4 tunneling mechanisms, and an IPv6-only infrastructure (where
translation techniques are deployed). In the second chapter we describe each of these scenarios in
more detail focusing on the general peculiarities and difficulties one has to face when trying to
implement one or the other in any part of a network.

The third chapter covers the possible transition mechanisms and methods on a theoretical basis. It
describes the way they work as well as where they are best deployed and if there are any known
security and interoperability issues pertaining to a given mechanism in general. This chapter is also
divided in three sections covering mechanisms for dual stack, tunneling and translation in turn.

Before the more technical part of this document begins with chapters five to seven the fourth
chapter contains descriptions of some “real world” transition scenarios. These scenario descriptions

IST-2001-32603
Deliverable D2.3.3-bis1

 9

are meant for the reader to get an idea of how different transition mechanisms can be used together
to migrate a whole network to IPv6. The next three chapters (five to seven) make up the heart and
most important part of this document and contain the example configurations for various
implementations of the previously described transition mechanisms. Once the reader is familiar
with the theory of a certain mechanism these chapters should enable them to deploy it on any
platform covered in this document. Where relevant, these chapters will also contain information
about known security and interoperability problems where they are specific to a certain
implementation of a transition mechanism.

In Appendix A, the reader will find a list of available implementations of transition tools. The list
might even contain a few implementations that are not (yet) covered in chapters five to seven. There
is no guarantee that this list is ever going to be complete, of course, as the development work is still
going on for a lot of platforms.

Appendix B shows how to make platforms and operating systems ready for IPv6. It is not yet clear
if this section will be included in the final release of the deliverable as the information contained
here might become totally unnecessary in the near future where more and more platforms are IPv6
enabled by default. However if the section is present in the final revision of the deliverable it will
focus mostly on operational issues and experiences related to switching on IPv6 on a host or router.

Appendix C shows the most recent survey of deployed transition mechanisms at the 6NET partner
sites; this illustrates the popularity and perhaps usefulness of the various tools.

1.1. Document update

This document is an update to the original D2.3.3. The main additions for D2.3.3-bis1 are:

• Lancaster site case study;

• OpenVPN-based tunnelling description;

• Results of a 6NET survey of transition tool deployment.

There is likely to be a second update prior to the final cookbook in December 2004.

IST-2001-32603
Deliverable D2.3.3-bis1

 10

2. General Overview
IPv6 can be introduced to a site in three basic ways, categorized into how connectivity of each
system to the IPv6 Internet is achieved and how the network and hosts themselves have to be
enhanced to make IPv6 possible. We call these categories “dual stack”, “additional IPv6
infrastructure” (which generally involves IPv6- in-IPv4 tunnelling) and “IPv6-only networking”. In
a large-scale network one will never only use one technique or another. It is much more likely that
the best way for getting systems connected within a site has to be decided for each subnet or even
each host anew, which leads to the deployment of many different techniques according to the
different demands and peculiarities of a certain part of the network. This Chapter focuses on the
theoretical description of each or the three general transition scenarios “dual stack”, “additional
IPv6 infrastructure” and “IPv6-only networks”. Descriptions of special transition mechanisms as
they come into place within those scenarios are included in the next Chapter.

Once the internal networking is determined, the next step is to arrange external connectivity for the
whole site, which involves external routing issues and is really only possible either natively or via
some tunnelling mechanism. With IPv6, the choice of external connectivity method will determine
the IPv6 addressing prefix within the site. A site prefix is usually (as recommended by the RIRs) a
/48 prefix, which allows 16 bits of subnet address space for the /64 subnets.

We discuss security issues in this section. An overview of security issues in transition is available as
an Internet Draft produced from 6NET experience [TRANSSEC].

2.1. Dual Stack

One of the conceptually easiest ways of introducing IPv6 to a network is called the “dual stack
mechanism” [RFC2893]. Using this method a host or a router is equipped with both IPv4 and IPv6
protocol stacks in the operating system (though this may typically be implemented in a hybrid way).
Each such node, called an “IPv4/IPv6 node”, is configured with both IPv4 and IPv6 addresses. It
can therefore both send and receive datagrams belonging to both protocols and thus communicate
with every node in the IPv4 and IPv6 network. This is the simplest and most desirable way for IPv4
and IPv6 to coexist and is most likely to be the next step in a network’s evolution in general, before
a complete transition to an IPv6-only Internet can be achieved worldwide.

There are no real transition mechanisms to use within the dual stack scenario, as “Dual Stack” is a
method to integrate IPv6 itself.

One challenge in deploying an IPv6/IPv4 Dual Stack network lies in configuring both internal and
external routing for both protocols. If one has for example used OSPFv2 for intra site routing before
adding IPv6 to the Layer 3 network one will either have to make the transition to OSPFv3 or IS-IS
necessary or one will at least be forced run one of these IGPs in addition to OSPFv2. Over the
course of writing this document there has been a deliverable released by WP3 within the 6NET
project. This deliverable (D3.1.2) is also a cookbook and focuses on configuration examples for
IPv6 routing both intra- and inter-domain. Since configuring IPv6 routing in a dual stack network is
usually completely independent from the configuration of IPv4 routing the reader is asked to refer
to this cookbook for most of the issues concerning basic routing setup. This cookbook will focus
exclusively on the issues arising when doing both IPv4 and IPv6.

IST-2001-32603
Deliverable D2.3.3-bis1

 11

Another challenge lies in the interaction of the two protocols, and how this interaction is managed,
given that a dual-stack network will (in an early stage of worldwide IPv6 deployment) generally be
interacting with IPv4 external networks. An example is the deployment of email servers for SMTP,
and how the MX servers are provisioned for both protocols by offering IPv4 or IPv6 reachability,
and how failover is handled between the protocols. These issues will be discussed in the scenarios
section.

2.2. Additional IPv6 infrastructure

By additional IPv6 infrastructure we mainly mean tunnelling techniques that one can use on top of
the present IPv4 infrastructure without having to make any changes to the IPv4 routing or the
routers. This method is often used where parts of or the complete infrastructure is not yet capable to
offer native IPv6 functionality. Therefore IPv6 traffic has to cross the existing IPv4 network, which
is possible with several different tunnelling techniques described in the following Chapter. These
techniques are often chosen as a first step to test the new protocol and to start integration of IPv6.

Tunneling is also called encapsulation. It is a process by which information from one protocol is
encapsulated inside the packet of another protocol architecture, thus enabling the original data to be
carried over the second protocol. This mechanism can be used when two nodes that use the same
protocol want to communicate over a network that uses another network protocol. The tunneling
process involves three steps: encapsulation, decapsulation, and tunnel management. It requires two
tunnel endpoints, which in the general case are dual-stack IPv4/IPv6 nodes, to handle the
encapsulation and decapsulation. There will be performance issues associated with tunneling, both
for the latency in en/decapsulation and the additional bandwidth used, though the latter is usually
marginal.

A tunnel can be configured in four different ways:

1. Router to router, which spans one segment of the end-to-end path between two hosts.

2. Host to router, which spans the first segment of the end-to-end path between two hosts.

3. Host to host, which spans the entire end-to-end path between two hosts.

4. Router to host, which spans the last segment of the end-to-end path between two hosts.

Depending on what kind of setup is used, a tunnel might be “configured” (both sides need to be
configured accordingly), “semi-configured” (only one side has to be configured, the other side acts
as a gateway) or “automatic”, where nearly nothing needs to be done for the two hosts to
communicate via a tunnel.

2.3. IPv6-only Networks

In IPv6-only networks communication between nodes is just that: IPv6-only. Communication
between a node on the IPv6-only network and a remote node reachable only over IPv4 is not
possible, because the hosts can only communicate using IPv6 at the network layer. This is where
translation techniques come into place, which can operate at many different layers. We categorize
translation techniques by the layer they may appear in, that is the network layer, the transport layer
or the application layer.

In the network layer the header of a datagram is translated from IPv6 to IPv4 (or vice versa), which
happens in the operating system of the originating host. In the transport layer the general

IST-2001-32603
Deliverable D2.3.3-bis1

 12

mechanism is the use of a relay, which the data has to pass through. This relay is commonly a dual
stack device that will translate and pass datagrams between the different networks. In the
application layer an “application layer gateway” (ALG) is used, e.g. a web proxy. While in the
network and transport layer translating and relaying IPv4/IPv6 datagrams is mostly application
independent, application layer gateways have to be set up for each and every application or service
one wants to offer.

IST-2001-32603
Deliverable D2.3.3-bis1

 13

3. Description of Tools and Mechanisms
This chapter will describe the different transition mechanisms that can be used within each of the
scenarios “dual stack”, “IPv6 tunnelling techniques” and “IPv6-only networks” in theory. Where
necessary also general operational as well as security issues are addressed for each mechanism.

3.1. Dual Stack

As mentioned previously there are not really any transition mechanisms or tools involved as dual
stack is a method to integrate IPv6 itself. To make a node a dual stack node one just has to switch
on IPv6 on most platforms. This way the node becomes a “hybrid stack” host, given that elements
of the protocol stacks are likely to be shared in the implementation.

A network or backbone becomes dual-stack if the routers and switches building the network not
only route and handle IP(v4) but also route and handle IPv6.

3.1.1. Security Considerations for Dual-Stack Networks

Making a network/host dual-stack and providing this host/network with IPv6 connectivity to the
rest of the IPv6 Internet does not pose a security threat in itself. It will just add a completely
separate IP infrastructure for which the same or similar measures have to be taken for it to become
as secure as the IPv4 network.

For example, if the parallel IPv4 network (or a single host) is protected by a (personal) firewall with
certain IPv4-sepcific rule sets it should be taken care that this firewall is either extended with IPv6
support and corresponding rule sets for IPv6 or a separate IPv6-only firewall should be
implemented that performs the task of securing the hosts and network the same way for IPv6 as the
IPv4 firewall does for IPv4.

Another example is access- lists. If IPv4 access-lists are in place protecting parts of the network by
preventing access from or to other parts of the network, IPv6 access-lists have to be created
accordingly to implement the same restrictions when hosts communicate via IPv6.

3.2. IPv6 Tunneling Methods

In this section we describe methods for carrying IPv6 over existing IPv4 networks, which invariably
means using some kind of tunnelling mechanism, either manually configured or automatically
configured.

3.2.1. Configured Tunnel

Configured tunnelling is defined in RFC 2893 [RFC2893] as IPv6-over-IPv4 tunnelling where the
IPv4 tunnel endpoint address is determined by configuration information on the encapsulating node.
Therefore the encapsulating node must keep information about all the tunnel endpoint addresses.
These kinds of tunnels are point-to-point and need to be configured manually. For control of the

IST-2001-32603
Deliverable D2.3.3-bis1

 14

tunnel paths, and to reduce the potential for tunnel relay denial-of-service attacks, manually
configured tunnels can be advantageous over automatically configured tunnels.

Configured tunnels are best employed when providing external IPv6 connectivity to a whole
network. There are not yet many providers who offer IPv6 in any way but if one has the possibility
to get initial IPv6 connectivity from another site, one of the easiest, most stable and secure ways to
get the IPv6 traffic routed to the yet unconnected site is via an IPv6- in-IPv4 tunnel. One can even
set up a BGP peering on that link, although if the tunnel is the only off-site link, BGP is not
required unless the connecting site is interested in seeing the BGP routing information of its
upstream provider.

Within a site, configured IPv6- in-IPv4 tunnels can also be used if there is a part of the network that
can (for whatever reason) not be natively connected to the rest of the IPv6 topology. Since these
kinds of tunnels have to be configured by hand this makes only sense if there is only a requirement
for just a few of those tunnels. There is no point in connecting a lot of different isolated hosts by a
configured tunnel or a lot of different isolated subnets. There are other tunnelling methods
specifically designed for this purpose, such as ISATAP, a tunnel broker or 6to4.

Note that IPv6-in-IPv4 tunnels may be used for OSPFv3 routing but not with IS-IS as IS-IS is based
on Layer 2 while IPv6- in-IPv4 tunnels are completely Layer 3.

3.2.1.1 Security Considerations for IPv6-in-IPv4 Tunnels

If a IPv6- in-IPv4 tunnel should be set up to a host behind an IPv4 firewall it is necessary to open
that firewall for protocols 41 (IPv6) and 58 (ICMPv6) at least for the IPv4 address of the host at the
remote end of the tunnel, which will be the source of the incoming IPv4 traffic that contains the
IPv6 packets. Ideally it should be possible to restrict this opening to only those IPv4 packets
destined for the local tunnel endpoint, limiting the connection to the agreed endpoints. This will
leave the site relatively protected concerning IPv4.

In addition to possible attacks through IPv4 though, now also security attacks against IPv6 must be
considered for all hosts, which will eventually be connected via IPv6 to the tunnel endpoint.
Firewalls with IPv6 support have separate rule sets for IPv6 and IPv4. Few though, if any, are
designed to unroll the tunnelling protocol (this applies also to tunnelling with 6to4, Teredo,
ISATAP, etc.) and thus apply the rules directly to the encapsulated traffic. The problem with that is,
that to an IPv4 firewall rule set, SIT (normal IPv6- in-IPv4 tunnels) as well as 6to4 traffic looks like
nothing more than protocol 41 on IPv4. To an IPv6 firewall rule set, SIT and 6to4 do not exist. So
neither rule set applies directly to the tunnelled traffic beyond switching protocol 41 on or off.
Bitmapped rules, which mask against encapsulated payloads, are a difficult and error prone
workaround.

In the case of setting up configured IPv6-in-IPv4 tunnels or 6to4 for external connectivity of a
site/subsite it is best to separate the two tasks of securing IPv4 and IPv6. This can be done by
employing IPv6 security mechanisms after the IPv6 packets have been decapsulated (ideally
immediately at the local tunnel endpoint). For example special IPv6 access lists and IPv6 firewalls
can then be easily used to extend the same level of security to IPv6 as is present at the site border
for IPv4 traffic.

IST-2001-32603
Deliverable D2.3.3-bis1

 15

3.2.2. Tunnel Broker

Instead of manually configuring each tunnel endpoint it is possible to use executable scripts instead.
This “automatic” alternative is called a “tunnel broker” and is presented in RFC 3053 [RFC3053].

Like manually configured tunnels, the tunnel broker is useful where a user has a dual-stack host in
an IPv4-only network, and wishes to gain IPv6 connectivity. The basic philosophy of a tunnel
broker is that it allows a user to connect to a web server, (optionally) enter some authentication
details, and receive back a short script to run and establish an IPv6-in-IPv4 tunnel to the tunnel
broker server.

The operation of a typical tunnel broker service is illustrated in Figure 3-1. The provider of a tunnel
broker service needs to provide a web server (available over IPv4) and a (dual stack) router device
capable of accepting setup commands to create new tunnels to client endpoints. It is possible that
both functions can be served from one machine.

1

2

3
1

23

IPv6 networks

Dual-stack host

Tunnel broker
Web server

Tunnel broker
tunnel server

User connects to web server
requesting tunnel

Web server returns script to create
tunnel to the tunnel server, and
informs tunnel server of new client

Client activates script, and gaining
access to IPv6 networks via the
tunnel server

Figure 3-1: Tunnel broker components and set-up procedure

A tunnel broker can be implemented in many ways. The requirement for the service is that it needs
to keep track of the tunnels created and whom they belong to. Ideally it should have some
authentication to grant access to the service, but in practice early implementations have not required
this. The Freenet6 service (http://www.freenet6.net) is perhaps best known, but being based in
Canada is not ideal for use in European networks (the first hop to any destination would be
thousands of miles away); an ISP should offer local tunnel broker facilities for its users where no
native IPv6 service is present.

Tunnel brokers can serve subnet tunnels, as well as single host tunnels. In such cases the host
obtaining the tunnel is in reality a router, and the mechanism for obtaining the tunnel can be more
generic (using for example TSP, the tunnel setup protocol [TSP]), and may need specific functions
to activate or deactivate the tunnel.

IST-2001-32603
Deliverable D2.3.3-bis1

 16

The tunnel broker service is generally easy to use for the client, but there are some concerns with
the deployment of server systems, e.g. in security of access, and in re-allocation of tunnels where
clients use dynamic IPv4 addresses (as is typical behind commodity dialup). As with other tunnel
methods, any intervening firewall must pass Protocol 41 to/from the tunnel server. Where that is not
required, a site administrator may be blissfully unaware of users on their site who use tunnel
brokers, thus not creating any site demand for “proper” IPv6 deployment.

A tunnel broker is an important transition aid; it enables easy-to-use IPv6 network access, and we
expect to see a number of supported brokers used in the 6NET environment during the project.
The tunnel brokers may be deployed by sites (universities) or by NRENs (as not every university
will wish to run its own broker). If no broker is available to a national participant, remote brokers
may be used, but doing so will naturally reduce the efficiency of the tunnelling, since the first IPv6
hop for the client will be in the (distant) remote network, even if the target is relatively local.

3.2.3. Automatic Tunnels

This type of tunnel mechanism uses IPv4-compatible IPv6 addresses on the tunnel endpoints. The
address of the recipient node is specified by the packet that is being encapsulated. This method can
only be used on router-to-host and host-to-host communication since these are the only schemes
where one tunnel endpoint is also the recipient. Due to the use of particular addresses it only works
on IPv6 over IPv4 tunnelling and not vice versa.

It is currently widely felt that automatic tunnelling should be deprecated. One reason for that lies in
the ad-hoc nature of connectivity that results, lacking structure in the IPv6 domain; solutions such
as ISATAP or 6to4 (see below) are generally considered preferable. IPv4-compatibe addressing is
being written out of the update to RFC2893.

3.2.4. 6to4

The transition mechanism known as 6to4 [RFC3056] is a form of automatic router-to-router
tunneling that uses the IANA-assigned IPv6 TLA prefix 2002::/16 to designate a site that
participates in 6to4. It allows isolated IPv6 domains to communicate with other IPv6 domains with
minimal configuration. For that an isolated IPv6 site will assign itself a prefix of
2002:V4ADDR::/48, where V4ADDR is the globally unique IPv4 address configured on the
appropriate interface of the domain’s egress router (see Figure 3-2). This prefix has exactly the
same format as normal /48 prefixes and thus allows an IPv6 domain to use it like any other valid /48
prefix. In the scenario where 6to4 domains wish to communicate with other 6to4 domains, no
tunnel configuration is needed. Tunnel endpoints are determined by the value of global routing
prefix of the IPv6 destination address contained in the IPv6 packet being transmitted which includes
the IPv4 address. In this scenario, an arbitrary number of 6to4 domains may communicate without
the need for any tunnel configuration. Furthermore, the 6to4 routers do not need to run any exterior
IPv6 routing protocol as IPv4 exterior routing performs the task instead.

IST-2001-32603
Deliverable D2.3.3-bis1

 17

6-to-4
Domain

IPv4
Cloud

6-to-4
Router

6-to-4
Domain

6-to-4
Router

IPv6 host
IPv6 host

IPv6 over IPv4 Tunnel

2002:C251:2E01::/48 2002:C253:6A06::/48

194.81.46.1 194.83.106.6

Figure 3-2: 6to4 service overview

When 6to4 domains wish to communicate with IPv6-only domains however, the situation is a little
more complex. In this case, connectivity between the domains is achieved via a relay router, which
is essentially a router that has at least one logical 6to4 interface and at least one native IPv6
interface. Unlike with the previous scenario, IPv6 exterior routing must be used. The relay router
advertises the 6to4 2002::/16 prefix into the native IPv6 routing domain. In addition the relay router
may advertise native IPv6 routes into its 6to4 connection. The relay router can be discovered using
IPv4 anycast, as described in RFC 3068 [RFC3068].

Most ISPs/NRENs only advertise their 6to4 relay within their own network. There are very few
“public” relays, in part due to the security concerns described below. Despite such concerns, and
concerns over provision of Multicast over 6to4, the protocol does offer a very convenient, automatic
way to gain IPv6 connectivity to an IPv4-connected site.

The general use of 6to4 is as a mechanism for an IPv6 site border router with only IPv4 external
connectivity to establish automatic connectivity to the IPv6 public Internet. Other methods (e.g.
ISATAP, or native IPv6 networking if available) can then be used inside the site. It can also be used
on a host, but such usage is (we expect) rather less common and not originally intended.

3.2.4.1 Security Considerations with 6to4

There are concerns about the security of 6to4 relay devices (see deliverable 6.2.2 [D6.2.2]), which
may be used for remote denial-of-service attacks. 6to4 is meant to provide an automatic way of
connecting a site to any outside 6to4 site without special configuration, so on a 6to4 host incoming
6to4 traffic will be accepted and decapsulated from any source from which regular IPv4 traffic is
accepted. Using an IPv4 firewall to restrict incoming packets with protocol 41 to only specific IPv4
source addresses is therefore not possible (see also section 3.2.1.1 on security issues with manually
configured IPv6- in-IPv4 tunnels.). If the firewall provides this functionality one can however still
restrict the traffic so only packets to specific destination addresses, specifically to the addresses of
those routers which use 6to4 is let through.

If IPv6 address spoofing is felt to be a threat, a plausibility check on weather the encapsulating IPv4
address is consistent with the encapsulated 2002::/16-address can be used on the 6to4 routers. If
such a check is applied, exceptions to it must be built in to admit traffic from relay routers.
2002::/16-traffic must also be excluded from checks applied to prevent spoofing of “6over4” traffic
(see section 3.2.5.1). In any case, 6to4 traffic whose source or destination address embeds an IPv4

IST-2001-32603
Deliverable D2.3.3-bis1

 18

address which is not in the format of a global unicast address must be discarded. Specifically, this
means that IPv4 addresses defined in RFC 1918, broadcast, subnet broadcast, multicast and
loopback addresses are unacceptable. For more information on 6to4 security issues please also refer
to the current version of [6TO4SEC].

3.2.5. 6over4

6over4 is defined in RFC 2529 [RFC2529]. It interconnects isolated IPv6 hosts in a site through
IPv6- in-IPv4 encapsulation without explicit tunnels. It uses IPv4 addresses as interface identifiers
and creates a virtual link using an IPv4 multicast group with organization- local scope. IPv6
multicast addresses are mapped to IPv4 multicast addresses to allow neighbour discovery. The
6over4 method has fallen out of favour due to a number of reasons, including the general lack of
IPv4 multicast support in site/ISP networks.

There have been a small number of implementations, including those by 3Com and Cisco, but
practically no adoption. We thus do not consider 6over in any detail, as the method seems (in
effect) deprecated.

3.2.5.1 Security Cons iderations with 6over4

If 6over4 is used there is a possible spoofing attack in which spurious 6over4 packets are injected
into a 6over4 domain from outside. Thus boundary routers must discard multicast IPv4 packets with
source or destination multicast addresses of organization local scope (should be 192.X.X.X, see
[RFC2365] for details), if they arrive on physical interfaces outside that scope. To defend against
spurious unicast 6over4 packets, boundary routers must discard incoming IPv4 packets with
protocol type 41 from unknown sources (see exceptions for 6to4 in section 3.2.4.1). Unless IPsec
authentication is available, the recommended technique for this is to configure boundary routers
only to accept protocol type 41 packets from source address within a trusted range or ranges.

3.2.6. ISATAP

An alternative to 6over4 is ISATAP (Intra-Site Automatic Tunnel Addressing Protocol) [ISATAP].
ISATAP also uses the site’s IPv4 infrastructure as a virtual link, but it does not use IPv4 multicast,
so the link is NBMA (Non-Broadcast Multiple Access).

ISATAP, like 6over4, creates an interface identifier based on the interface’s IPv4 address. ISATAP
supports both autoconfiguration and manual configuration of addresses, but the IPv4 address of the
interface will be embedded as the last 32 bits of the IPv6 addresses. As with 6over4, the IPv4-
addresses need not be globally unique.

Usually multicast is used for neighbour discovery operations like address resolution and router
solicitations or advertisements. Since the IPv4 address is always embedded in the IPv6 address,
address resolution is trivial. For router solicitations to work, the host must somehow have learned of
IPv4 addresses of possible ISATAP routers (through DHCP, DNS, manua l configuration etc)., and
will then send solicitations as unicast. The router always sends advertisements as unicast and only
as a reply to a host’s solicitation. Each ISATAP host will regularly send solicitations to the ISATAP
routers it knows of.

IST-2001-32603
Deliverable D2.3.3-bis1

 19

3.2.6.1 Security Considerations with ISATAP

In addition to the security considerations which where mentioned for neighbour discovery and
stateless address autoconfiguration, site administrators must ensure that lists of IPv4 addresses
representing the advertising ISATAP interfaces of potential router list (PRL) members are well
maintained. The PRL provides the policy for trusting router advertisements, which is problematic
considering that the PRL itself could possibly not be trusted. That is why administrators must
ensure that lists of IPv4 addresses representing the advertising ISATAP interfaces of PRL members
are well maintained. If the PRL is compromised, many different attacks are possible. An analogy
can be found in rough DHCP servers being deployed on a network.

3.2.7. Teredo

Teredo [TEREDO] (formerly known as Shipworm) is designed to make IPv6 available to IPv4
hosts through one or more layers of NAT [RFC1631] by tunnelling packets over UDP. It uses two
entities: a Teredo server and a Teredo relay. The server listens for requests from the clients,
responding with an IPv6 address for them to use. It forwards the IPv4-encapsulated IPv6 packets
sent from the clients to the relay, and also forwards the IPv6 packets received from the Teredo
relay. The relay acts as an IPv6 router. Teredo is very much a “last resort” tool, only designed to be
used where no other method will work (e.g. in an enterprise network using RFC1918 addresses and
offering no IPv6 transition support mechanisms). The Teredo method is complex, and cannot be
guaranteed to work due in part to varieties in NAT implementations.

3.2.7.1 Security Considerations for Teredo

The threats posed by Teredo can be grouped into four different categories:

1) Opening a hole in the NAT

2) Using the Teredo service for a man- in-the-middle attack

3) DoS of the Teredo Service

4) DoS against non-Teredo nodes

These four types of threats as well as possible mitigating strategies are addressed below.

Opening a Hole in the NAT

As Teredo is designed to make a machine reachable via IPv6 through one or more layers of NAT,
the machine using the service consequently give up any firewall service that was available in the
NAT box. All services opened for local use will become potential targets for attacks from the entire
IPv6 Internet. It is recommended to use a personal firewall solution, i.e. a piece of software that
performs the kind of inspection and filtering locally that is otherwise performed in a perimeter
firewall as well as the usage of IPv6 security services such as IKE, AH, or ESP.

Man-in-the-Middle Attacks

The goal of the Teredo service is to provide hosts located behind a NAT with a globally reachable
IPv6 address. There is a possible class of attacks against this service in which an attacker somehow
intercepts the router solicitation, responds with a spoofed router advertisement and provides a

IST-2001-32603
Deliverable D2.3.3-bis1

 20

Teredo client with an incorrect address. The attacker may have one of two objectives: a) it may try
to deny service to the Teredo client by providing it with an address that is in fact unreachable, or b)
it may try to insert itself as a relay for all client communications, effectively executing a man- in-
the-middle attack. It is not possible to use IPv6 security mechanisms such as AH or ESP to ward of
these kinds of attacks since the cover only the encapsulated IPv6 packet but not the encapsulating
IPv4- and UDP header. In fact it is very hard to find an effective signature scheme to prevent such
an attack since the attacker does not do anything else than what the NAT legally does. The Teredo
Client should systematically try to encrypt outgoing IPv6 traffic using IPsec. That will at least make
spoofing of the IPv6 packets impossible and prevent third parties from listening in to the
communication. By providing each client with a global IPv6 address Teredo enables the use of
IPsec.

Denial of the Teredo Service by Server Spoofing or an Attack of the Servers

Spoofed router advertisements can be used to insert an attacker in the middle of a Teredo
conversation. The spoofed router advertisements can also be used to provide a client with an
incorrect address pointing to either a nonexistent IPv4 address or to the IPv4 address of a third
party. The Teredo client will detect the attack when it fails to receive traffic through the newly
acquired IPv6 address of the so-called Teredo server. Using authentication encapsulation this attack
can be prevented.

Other than confusing clients with false server addresses the Teredo service can of course also be
disrupted by mounting a Denial of Service attack against the real Teredo servers and relays sending
a huge number of packets in a very short time. Since Teredo servers are generally designed to
handle quite a large amount of network traffic this attack most likely will have to be quite brute
force, if it should work at all. The attack is mitigated if the Teredo service is built redundantly and
the clients are ready to “failover” to another server. That will of course cause the clients to
renumber.

If a Teredo relay is attacked in such a way it should stop announcing the reachability of the Teredo
service prefix to the IPv6 network. The traffic will be picked up by the next relay.

Denial of Service against non-Teredo Nodes

There is a widely expressed concern that transition mechanisms such as Teredo can be used to
mount denial of service attacks by injecting traffic at locations where it is not expected. These
attacks fall into three categories: a) using the Teredo server as a reflector in a denial of service
attack, b) using the Teredo server to carry a denial of service attack against IPv6 nodes and c) using
the Teredo relays to carry a denial of service attack against IPv4 nodes. A common mitigating
factor in all of these cases is the “regularity” of the Teredo traffic which contains highly specific
patterns such as the Teredo UDP port or the Teredo IPv6 prefix. In cases of attacks these patterns
can be used to quickly install filters and remove the offending traffic.

3.2.8. Tunnel Setup Protocol (TSP)

The Tunnel Setup Protocol (TSP) [RFC3053] is a general method designed to simplify the setup of
(authenticated) IPv6 tunnels over IPv4 networks. The TSP method was initially applied to tunnel
brokers, but the scope of the TSP applicability is much wider.

IST-2001-32603
Deliverable D2.3.3-bis1

 21

3.2.9. DSTM

DSTM (Dual Stack Transition Mechanism) [DSTM] is a tunneling solution for IPv6-only networks,
where IPv4 applications are still needed on dual-stack hosts within an IPv6-only infrastructure. IPv4
traffic is tunnelled over the IPv6-only domain until it reaches an IPv6/IPv4 gateway, which is in
charge of packet encapsulation/decapsulation and forwarding between the IPv6-only and IPv4-only
domains. The solution proposed by DSTM is transparent to any type of IPv4 application and allows
the use of layer 3 security.

Usually with a tunnelling scheme, one IPv4 address is required for every host wishing to connect to
the IPv4 Internet. DSTM reduces this constraint by allocating addresses only for the duration of the
communication making it possible for several hosts to share the same address on a large time scale.

DSTM can be implemented if a network infrastructure only supports IPv6, but some of the nodes on
the network have dual-stack capability (and IPv4-only applications). DSTM consists of three
components:

1. An Address Server,

2. A DSTM Gateway or TEP (Tunnel End Point) and

3. A Dual-IP node (called a “DSTM node”) wishing to communicate using IPv4.

For the sake of simplicity, we have decided to present the server and the gateway as different
equipment, but in actual deployments, these two functionalities are mostly to be performed by the
same host. Figure 3-3 presents the interaction between these three elements.

Figure 3-3: DSTM Architecture

As long as communications can take place in native IPv6, none of the capacities of DSTM are
required. This applies to protocols like http or smtp, where the use of ALGs (Application Level
Gateways) is to be preferred. When a DSTM node detects the need of an IPv4 address, by a query
to the DNS resulting in an IPv4 destination address or an application opening an IPv4 socket, the
DSTM process is launched.

When the first IPv4 packet needs to be sent, the DSTM client asks the server for an address (1). A
number of protocols (DHCPv6 [DHCPv6], TSP [DSTM_TSP], RPC) have already been proposed
to perform this task. Native IPv6 transport is the only restriction in this matter.

IST-2001-32603
Deliverable D2.3.3-bis1

 22

Following an address request, the server asks the DSTM gateway to add a Tunnel End Point (TEP)
for the requesting DSTM node. It is the server who controls the IPv4/IPv6 address mapping
performed at the DSTM gateway. Initial versions of DSTM considered that the gateway would
build its IPv6/IPv4 mapping table dynamically by observing packet headers, but this approach is
now obsolete due to security concerns.

If the end point for the new tunnel is successfully created, following the answering message from
the gateway, the DSTM server (who manages an IPv4 address pool) replies to the host with the
following information:

• The allocated IPv4 address,

• The period over which the address has been allocated and

• IPv4 and IPv6 addresses of the TEP.

This information is used by the node to configure an IPv4-over-IPv6 tunnel towards the DSTM
gateway (3). At this point, the DSTM node has IPv4 connectivity and, if it obtained a global IPv4
address, it will be able to connect to any external host.

In DSTM, the period of allocation can be configured based on address availability. Nodes are
required to ask for allocation renewal before allocation time expires. Depending on local policy and
node behaviour, the DSTM server may accept or deny to extend the allocation. In normal operation,
requests for allocation renewal are periodically sent until the address is no longer needed by the
host. As long as the address allocation is extended, the DSTM server is not required to update the
IPv4/IPv6 mapping table at the gateway. However, when the allocation expires, the gateway must
be informed in order to update its tables and allow other nodes to re-use the TEP for that IPv4
address.

The DSTM gateway is in charge of packet forwarding between the IPv6-only domain and IPv4
networks. It performs packet encapsulation/decapsulation using an IPv4/IPv6 mapping table. For
successful bi-directional communication, it is very important to allow IPv4 forwarding at the
gateway and to make sure that, for any IPv4 packet coming from the outside, the route to DSTM
nodes points to the TEP.

DSTM is to be used in a network domain where IPv6 routing is enabled and ALL nodes within that
domain are able to communicate using IPv6. In this case, IPv4 support can be turned off. Thus the
burden of maintaining an IPv4 addressing plan and supporting IPv4 routing is removed. However,
given the huge number of IPv4-only hosts and applications in the Internet, a number of hosts inside
IPv6-only domains will still require IPv4 connectivity.

DSTM can be deployed where no other solutions, such as ALGs, can be implemented. DSTM
allows Dual IP-layer nodes to obtain an IPv4 address and offers a default route (through a 4over6
tunnel) to an IPv4 gateway. Any IPv4-only application can run over an IPv6-only network if such a
scheme is used and, if DSTM is configured to allocate Global IPv4 addresses, hosts inside that
domain will be able to communicate with any other host on the Internet.

DSTM may be deployed in several phases. As a first step, IPv4 connectivity may be assured by
manually configuring tunnels from Dual-IP nodes to a Tunnel End Point (TEP). In a second phase,
when address allocation or tunnel set up protocols become available (DHCPv6, TSP), it would be
possible to dynamically assign an IPv4 address to requesting nodes. In this phase, the address may
be allocated for the whole lifetime of the requesting node, reducing the complexity of address
management. Finally, when IPv4 address availability becomes a problem, DSTM may be

IST-2001-32603
Deliverable D2.3.3-bis1

 23

configured to allocate addresses only for small periods of time, based on the real needs of
requesting hosts.

Since the address allocation process in DSTM is triggered only when IPv4 connectivity is strictly
necessary, the size of the IPv4 address pool required by the mechanism should decrease with time
(as more hosts and applications become IPv6 aware). However, if the lack of IPv4 address space
continues, DSTM may be extended to include the 'ports option' [DSTM_DHCPv6], allowing
simultaneous use of the same address by several hosts, but increasing complexity.

3.2.9.1 “The VPN-Scenario”

An alternative use of DSTM concerns what has been called "the VPN scenario" [DSTM_VPN]. It
concentrates on the situation where a DSTM node is outside its home domain. Supposing that the
node can easily obtain an IPv6 address on the visited network but no IPv4 configuration is possible,
the DSTM node can negotiate with its home DSTM server and TEP for IPv4 connectivity. If
authentication succeeds and the nomad node obtains an address, the node's IPv4 traffic will be sent
to the TEP at its home network using a 4over6 tunnel. Even if the path is not optimal, the node
obtains access to private IPv4 resources in its home domain and may obtain global IPv4
connectivity.

3.2.9.2 Security Considerations with DSTM

The DSTM mechanism can use all of the defined security specifications for each functional part of
its operation.

E.g. for DNS, the DNS Security Extensions/Update can be used.

Concerning address allocation, when connections are initiated by the DSTM nodes, the risk of
Denial of Service attacks (DOS) based on address pool exhaustion is limited in the intranet
scenario. With the intranet scenario, if DHCPv6 is deployed, the DHCPv6 Authentication Message
can be used for security. When using TSP for address allocation, the SSL encryption and
authentication can be used since TSP messages are in plain text.

When exchanging the DSTM options using DHCPv6, the DSTM Global IPv4 Address option may
be used by an intruding DHCP server to assign an invalid IPv4-mapped address to a DHCPv6 client
in a denial of service attack. The DSTM Tunnel Endpoint option may be used by an intruding
DHCP server to configure a DHCPv6 client with an endpoint that would cause the client to route
packets through an intruder system. To avoid these security hazards, a DHCPv6 client must use
authentication to confirm that it is exchanging the DSTM options with an authorized DHCPv6
server. The DSTM Ports option may be used by an intruding DHCP server to assign an invalid port
range to a DHCP client in a denial of service attack. To avoid this security hazard, a DHCP client
must use authenticated DHCP to confirm that it is exchanging the DSTM options with an
authorized DHCP server.

The main difference between the intranet scenario and the VPN scenario of DSTM is security. In
the VPN scenario, DHCPv6 must not be used for address allocation but TSP (tunnel set up
protocol) with SSL encryption can be used for this purpose.

In the VPN scenario, the DSTM server must authenticate the outside DSTM client. This
authentication cannot rely on the IPv6 address since the address depends on the visiting network but
can be based on some shared secret.

IST-2001-32603
Deliverable D2.3.3-bis1

 24

In the VPN scenario, the mapping between the IPv4 and the IPv6 address of the DSTM node in the
TEP is also a security concern. If the mapping is established dynamically (no configuration by the
DSTM server), it could be possible for every intruder knowing a valid temporary IPv4 address to
use the TEP as an IPv4 relay or to access internal IPv4 resources. So, in the VPN scenario, the
mapping in the TEP must be managed by the DSTM server which authenticates the DSTM host and
its IPv6 address. This is an important requirement that avoids the use of IPv4 resources by non
authorized nodes.

Finally, for IPv4 communications on DSTM nodes, once the node has an IPv4 address, IPsec can be
used since DSTM does not break secure end-to-end communications at any point. The tunnel
between the DSTM host and the TEP can be ciphered, but it is our view that this is more of an IPv6
feature (like the use of IPv6 mobility) than a DSTM feature

.

3.2.10. OpenVPN-based tunnelling solution

This method is being developed by JOIN within 6NET and will be described in detail in the next
iteration of this document.

It is based on the OpenVPN project: http://openvpn.sourceforge.net/. It is basically a Layer 3 tunnel
over UDP/IPv4 or TCP/IPv4, so it should prove possible to set up a router that uses the tunnel-
interface to route IPv6. It should be capable of traversing NATs and can, if needed, use strong
encryption over SSL.

This method is a solution for those calling for a more robust way to offer IPv6 connectivity in a
NAT environment.

3.2.10.1 Security Considerations with the OpenVPN scenario

In terms of security OpenVPN has the great advantage of providing authenticated and optionally
even encrypted tunnels. It is based on OpenSSL for certification and either uses static pre-shared
keys or TLS for dynamic key exchange. The use of X.509 certificates can be regarded as very
secure. It can only be compromised, if the secret key is not kept safe.

The certificates are not bound to specific hosts. They can be used anywhere between any two hosts.
So an owner of a certificate could put both public and private key on his laptop and with that set up
an authenticated tunnel from anywhere where he has IPv4 connectivity. This, of course, is the
desired functionality for any Virtual Private Network solution but in comparison to the usual IPv6-
in-IPv4 tunnels this has quite a few advantages for the deployment of IPv6 on for example dial- in
lines where users not usually have static IPv4 addresses. It provides the user with much more
flexibility at the cost of security relying solely on the fact that the user keeps his keys safe and only
uses them for himself.

3.2.10.2 Management Considerations with OpenVPN tunnels

OpenVPN tunnels are very robust and work even on rather unstable/unreliable IPv4 connections
between both endpoints. They are known to survive even ISDN or DSL reconnects where the client
comes back with a different IPv4 address. In this case a new TLS handshake is simply performed to
authenticate both sides and the tunnel is back online.

In and of itself the mechanism is not automated but it is an ideal basis for setting up a tunnelbroker :

IST-2001-32603
Deliverable D2.3.3-bis1

 25

• The use of a CA enables a centralized management of acces authorization and trust.

• Failure of the tunnel broker’s hardware or the IPv4 link between tunnel broker client and
server does not impose administrative work other than fixing hardware or link. The service
continues seamlessly after the IPv4 link between client and server is re-established. The
FQDN is used to identify a server and hence DNS entries may be changed to redirect tunnel
broker clients to a working server in the case of a failure.

• The persistence of the IPv6 link is very good because of mechanisms inherent in the
OpenVPN software.

• OpenVPN traverses most NATs without the need of additional configuration. If the NAT
does not support this traversal, fowarding of a single UDP port to the OpenVPN client
suffices to establish connectivity.

3.3. IPv6 Translation Methods

Translation methods are deployed where IPv6-only devices wish to communicate with IPv4-only
devices, or vice-versa and no IPv4- in-IPv6 is used.

3.3.1. SIIT, NAT-PT and NAPT-PT

A translator located in the network layer in the protocol stack is called a "header translator". Such
mechanisms translate IPv4 datagram headers into IPv6 datagram headers or vice versa. A model
that can be used when implementing this mechanism is presented in RFC 2765 [RFC2765]: "SIIT –
Stateless IP/ICMP Translation Algorithm".

Network Address Translation with Protocol Trans lation (NAT-PT), defined in RFC 2766
[RFC2766], is a service that can be used to translate data sent between IP-heterogeneous nodes.
NAT-PT translates an IPv4 datagram into, as far as possible, a semantically equivalent IPv6
datagram or vice versa. For this service to work it has to be at the interconnection point between the
IPv4 network and the IPv6 network.

Just like existing NATs in the IPv4 world translate between (usually) private IPv4 addresses and
globally routable IPv4 addresses, the NAT part of NAT-PT translates between a globally routable
IPv4 addresses to a IPv6 address or vice versa as well as from a private IPv4 address to an IPv6
address. The PT-part of the NAT-PT handles the interpretation and translation of the semantically
equivalent IP headers, either from IPv4 to IPv6 or from IPv6 to IPv4. Like NAT, NAT-PT also uses
a pool of addresses which it dynamically assigns to the translated datagrams.

Dual-stack and tunnel-based mechanisms do not alter any of the data contained in the IP datagram.
This is true both for IPv4 and IPv6 since the communication is end-to-end using only one protocol.
NAT-PT (and NAPT-PT as described below) on the other hand translates the header of the
datagram from IPv6 to IPv4 or vice versa. The result is a new header which is semantically
equivalent to the original header but not equal. It’s therefore likely that some of the information has
been lost during translation. For example that a service, which is only available in one protocol, is
lost when converted to another protocol.

RFC2766 also specifies a service called Network Address Port Translation + Packet Translation
(NAPT-PT). This service enables IPvX nodes to communicate transparently using only one IPvY

IST-2001-32603
Deliverable D2.3.3-bis1

 26

address. NAPT-PT maintains a set of port numbers, which it dynamically assigns to sockets located
on the recipient side of the NAPT-PT node.

NAT-PT shares many of the problems the TRT mechanism has, e.g. handling or rather failing to
handle IP addresses embedded in application protocol payloads.

3.3.1.1 Security Considerations with NAT-PT

End-to-End Security

As noted in RFC2766, NAT-PT and end-to-end security do not work together. When IPv6 only
node X initiates communication to IPv4-only node Y the packets from X have an IPv6 source as
well as an IPv6 destination address which are both used in IPsec (AH or ESP) and TCP/UDP/ICMP
checksum computations. Since NAT-PT assigns X with an IPv4 address that has no relationship to
X’s IPv6 address, there is no way for recipient Y to determine X’s IPv6 address and in that way
verify the checksums.

Prefix Assignment

RFC2766 does not explain how the IPv6 nodes learn about the prefix that is used to route packets o
the NAT-PT box. If the prefix is pre-configured in IPv6 nodes, the IPv6 node would prepend the
preconfigured prefix do the address of any IPv4-only node with which it wants to initiate
communications. However, with a prefix, there might be a reachability problem if the NAT-PT box
were to shut down unexpectedly. If an attacker would somehow be able to give the IPv6 node a fake
prefix, the attacker would be able to steal all of the node’s outbound packets to IPv4 nodes. Even
though this is not specified in RFC2766, DNS servers and DNS-ALGs can be used in outgoing
connection to return the prefix information to the IPv6 node as a means to avoid the problem of a
statically preconfigured prefix. When an IPv6-only node wishes to initiate communications with an
IPv4-only node, its resolver would send an AAAA query. This query can be passed through the
DNS-ALG which itself looks for an A record. In this case the DNS-ALG can prepend the
appropriate prefix for NAT-PT itself and thus return a full AAAA record to the IPv6-only node.
The DNS-ALG can also monitor the state of a number of NAT-PT boxes and use only the prefixes
of those that are running. The method by which a DNS-ALG determines the state and validity of a
NAT-PT box must of course also be secure. The DNS-ALG and each NAT-PT box should be
configured with a pairwise unique key that will be used for integrity-protected communications.
Note that messages from DNS-ALG are not integrity-protected and can therefore be modified. To
prevent such a modification, a DN-ALG can sign its packets. The DNS-ALG’s public key can be
maide available like that of any other DNS server (see RFC2535) or presented form of a certificate
that has a root CA that is well know to all nodes behind NAT-PT. A shared-key technique may not
be as practical.

Security Issues Arising when Using a DNS-ALG

A DNS-ALG is required when IPv4-only nodes should be allowed to initiate communication within
a NAT-PT scenario. Since the DNS-ALG will translate simple “A record” requests into “AAAA
record” requests and vice versa DNS-SEC will not work in this case. However, as pointed out in
draft-durand-v6ops-natpt-dns-alg- issues, if the hosts sets the “AD is secure”-bit in the DNS header,
it is possible for the local DNS server to verify signatures. Also another option to increase security
is for the DNS-ALG to verify the received records, translate them and sign the translated records

IST-2001-32603
Deliverable D2.3.3-bis1

 27

anew. A third option would be if the host had an IPsec security association with the DNS-ALG to
protect DNS records.

Source Address Spoofing Attack

There are two cases in which an attacker will use NAT-PT resources, one where the attacker is in
the same stub domain as the NAT-PT box and the second where the attacker is outside the NAT-PT
stub domain.

Suppose that an attacker is in the same stub domain as NAT-PT and sends a packet destined for an
IPv4-only node on the other side of the NAT-PT-gateway, forging its source address to be an
address that topologically would be located inside the stub domain. If the attacker sends many such
packets, each with a different source address, then the pool of IPv4 addresses may quickly get used
up, resulting in a DoS attack (or rather Address depletion attack). A possible solution to this attack
as well as to similar attacks like resource exhaustion or a multicast attack is to perform ingress
filtering on the NAT-PT box (which is the border router). This would prevent an attacking node in
its stub domain from forging its source address and thus from performng a reflection attack on other
nodes in the same stub domain. The NAT-PT box should also drop packets whose IPv6 source
address is a multicast address. Address Depletion attacks can be prevented by employing NAT-PT
in a way that it translates the TCP/UDP ports of IPv6 nodes into the corresponding TCP/UDP ports
of the IPv4 nods/addresses. However, sessions initiates by IPv4 nodes are restricted to one service
per server. Of course IPsec might be used to further increase security.

Suppose now that an attacker outside the NAT-PT domain sends a packet destined for an IPv6-only
node inside the NAT-PT domain and forges its (IPv4) source address to be an address from the IPv4
address pool used for NAT-PT. The same attacks are then possible as in the scenario above. Again
filtering can be used to prevent this. The NAT-PT gateway should drop all packets whose IPv4
source address is a broadcast/multicast address. It should also filter out packets from outside that
claim to have a source address from inside the NAT-PT domain.

3.3.2. BIS

The Bump in the Stack (BIS) [RFC2767] (see Figure 3-4) translation mechanism is similar to taking
the NAT-PT approach with SIIT and moving it to the OS protocol stack within each host. Unlike
SIIT however, it assumes an underlying IPv6 infrastructure. Whereas SIIT is a translation interface
between IPv6 and IPv4 networks, BIS is a translation interface between IPv4 applications and the
underlying IPv6 network (i.e. the network interface driver). The host stack design is based on that
of a dual stack host, with the addition of 3 modules, a translator, an extension name resolver, and an
address mapper.

IST-2001-32603
Deliverable D2.3.3-bis1

 28

IPv4 applications

Network Interface Driver

Extension name
resolver

Translator

Address
Mapper

IPv6

UDP/TCP/IPv4

Figure 3-4: The BIS Protocol Stack

The translator rewrites outgoing IPv4 headers into IPv6 headers and incoming IPv6 headers into
IPv4 headers (if applicable). It uses the header translation algorithm defined in SIIT. The extension
name resolver acts as the DNS-ALG in the NAT-PT mechanism. It snoops IPv4 DNS queries and
creates another query asking to resolve both ‘A’ and ‘AAAA’ records, sending the returned ‘A’
record back to the requesting IPv4 application. If only ‘AAAA’ records are returned, the resolver
requests the address mapper to assign an IPv4 address corresponding to the IPv6 address. The
address mapper maintains a pool of IPv4 addresses and the associations between IPv4 and IPv6
addresses. It will also assign an address when the translator receives an IPv6 packet from the
network for which there is no mapping entry for the source address. Because the IPv4 addresses are
never actually transmitted on the network, they do not have to be globally unique and a private
address pool can be used.

The BIS mechanism may be useful during initial stages of IPv4 transition to IPv6 when IPv4
applications remain unmodified within IPv6 domains. However, BIS is limited in its translation
capabilities. It allows IPv4 to IPv6 host communication but not vice versa. It does not send or
receive any IPv4 packets to/from the network. Thus, even an IPv4 application attempting
communication with another IPv4 application using BIS, will fail without additional translation
mechanisms somewhere in the communication path. As with NAT-PT and SIIT, BIS will not work
for multicast communications and will not work for applications that embed IP addresses in their
payloads. An ALG is required for any application that exhibits this behaviour.

The BIS method is not widely used.

3.3.3. BIA

The Bump in the API (BIA) [LEE02] translation mechanism is very similar to that of BIS.
However, instead of translating between IPv4 and IPv6 headers, BIA inserts an API translator
between the socket API and the TCP/IP modules of the host stack (see Figure 3-5).

IST-2001-32603
Deliverable D2.3.3-bis1

 29

IPv4 applications

TCP/UDP/IPv4

Network Interface Driver

TCP/UDP/IPv6

Socket API (IPv4, IPv6)

Extension name
resolver Function Mapper Address

Mapper

Figure 3-5: The BIA Protocol Stack

Thus, IPv4 socket API functions are translated into IPv6 socket API functions and vice versa. In
this way, IPv4/IPv6 translation can be achieved without the overhead of translating every packet
header. Like BIS, BIA is based on the addition of 3 modules: the extension name resolver, the
function mapper and the address mapper. Both the extension name resolver and the address mapper
modules operate in exactly the same way as the corresponding modules in BIS. The function
mapper is the entity that maps IPv4 socket calls to IPv6 socket calls and vice versa. The function
mapper does this by intercepting IPv4 socket API function calls and invoking corresponding IPv6
socket API function calls in their place. These IPv6 socket function calls are used to communicate
with the peer IPv6 host and are transparent to the IPv4 application that invoked the original IPv4
socket function calls.

The BIA mechanism is intended for systems that have an IPv6 stack but contain applications that
have not been upgraded to IPv6. Thus, BIA may be useful in early stages of transition when there
are many unmodified IPv4 applications within IPv6 domains. BIA allows IPv4 to IPv6 host
communication, but does not specify the reverse case. However, it could be easily extended to cater
to IPv6 to IPv4 host communication (this is also applicable to BIS). The advantage BIA has over
BIS is that it is independent of the network interface driver and does not introduce the overhead of
per-packet header translation. However, BIA exhibits similar limitations to BIS. It will not support
multicast communication without some additional functionality in the function mapper module, and
it will not work for applications that embed IP addresses in their payloads.

The BIA method is not widely used.

IST-2001-32603
Deliverable D2.3.3-bis1

 30

3.3.3.1 Security Considerations with BIA

Security issues with BIA mostly correspond to those of NAT-PT (see section 3.3.1.1). The only
difference is that with BIA address translation occurs in the API and not the network layer. The
advantage here is that, since the mechanism uses the API translator at the socket API level, hosts
can utilize the security of the underlying network layer (e.g. IPsec) when they communicate via
BIA with IPv6 hosts using IPv4 applications.

Another security issue NAT-PT and BIA have in common stems from the use of address pooling,
which may open a denial of service attack vulnerability. One should employ the same sort of
protection techniques as mentioned fore NAT-PT in this regard.

Note that since there is no DNS ALG necessary with BIA as it is with NAT-PT, there is no
interference with DNSSEC when using this transition mechanism.

3.3.4. Transport Relay

A translator located in the transport layer is called a transport relay. The relay is located somewhere
between the communicating nodes and enables IPv6-only hosts to exchange traffic (UDP or TCP)
with IPv4-only hosts. If two nodes – for example a client and an application server – use different
protocol stacks, they couldn’t communicate directly with each other, and traffic has to be passed
over a relay. In case of TCP the relay terminates the IPv6 transport protocol session from the client,
and thus acts as a transport destination endpoint to the client. At the same it originates a second
IPv4 transport session with the server, and copies received data from each session to the other. In
case of UDP the datagram is just translated and forwarded to the target node.

3.3.4.1 TRT

The Transport Relay Translator (TRT) [RFC3142] enables IPv6-only hosts to exchange traffic
(TCP or UDP) with IPv4-only hosts. No modification on hosts is required, the TRT system can be
very easily installed in existing IPv6 capable networks.

A transport relay translator which runs on a dual-stack node can use one protocol when
communicating with the client and one protocol when communication with the application server.
In such a setting the relay is able to translate in the transport layer all data sent between the client
and application server. For TCP such a translation includes recalculating the checksum, keeping the
necessary state information about which client socket is connected to witch server socket and
removing this state when the client ends its communication. With UDP the checksum is mandatory
when using IPv6 but not when using IPv4.

UDP is a connection- less protocol and in theory it is impossible for a relay to know which UDP
datagrams belong to the same session. A UDP relay implementation will typically assume that a
UDP datagram that follows another with the same source and destination within a certain time
interval, belong to the same session.

The TRT system can work with most of the common Internet applications: HTTP, SMTP, SSH, etc.
The transition mechanism operation is relatively simple:

The IPv6 host uses a DNS-ALG as its nameserver to resolve its DNS queries. The IPv6 host, when
asking its nameserver for the IPv6 address (AAAA record) of an IPv4-only host, will receive from
the DNS-ALG an IPv6 address (AAAA record) specially constructed from the IPv4 address
(A record), instead of an error message with the answer that no IPv6 address could be found

IST-2001-32603
Deliverable D2.3.3-bis1

 31

corresponding to the query. The constructed addresses consist of a special network prefix associated
with the transport relay and a host ID (the lower 64 bits) that embeds the IPv4 address of the remote
host.

The network is set up such that packets destined for addresses with the special network prefix are
routed to the TRT relay node. The TRT then intercepts transport sessions and acts towards the client
node as destination endpoint of an IPv6 session and acts towards the server node as source for an
IPv4 session, copying all data it receives from each session to the other.

IPv4
networkHostA

 IPv6 only

Special
DNSv6
szerver (or
DNS
proxy)

1. DNS
query

3. DNS reply :
AAAA (in case of IPv4 host
with a special prefix)

IPv6/IPv4
Transport
Relay
Translator

4. sending
IPv6 packet

IPv4 node
(destination)

5. sending
IPv4 packet

Figure 3-6: Transport Relay Translator in action

A UDP relay can be implemented in similar manner as a TCP relay. An implementation can
recognize a UDP traffic pair like a NAT systems does, by recording address/port pairs into a table
and managing table entries with timeouts.

There are both advantages and disadvantages in employing the TRT mechanisms. The advantages
include:

• There is no problem with fragmentation. If different fragmentation has to be used in the IPv6
and IPv4 parts of the TRT "connections", there is no problem: the Path MTU discovery
algorithm or fragmentation mechanism of the TRT relay server can handle the situation.

• There is no problem with ICMP packets. If any error occurred in any part of the TRT
connections the ICMP/ICMPv6 packet is sent back to the TRT relay server, where the error can
be handled properly or be reported towards the other end of the "connection".

• It is not necessary to modify the IPv6 stack of the initiating host, neither is it necessary to
modify the application to support relaying.

• It is relatively easy to setup.

IST-2001-32603
Deliverable D2.3.3-bis1

 32

• It can be enough to have only one TRT relay server for a whole site. And this router has to have
only one global IPv4 address.

The disadvantages include:

• There can be problems with applications using embedded IP addresses (e.g. FTP, H.323). The
TRT relay has to be smart enough to "look inside" the packets if such an application has to be
supported. In this case the TRT relay server becomes a kind of application proxy.

• It supports only unicast TCP/IP traffic, however it is theoretically possible to implement
multicast support as well.

• TRT is more difficult to scale than the stateless translation methods. The TRT relay server has
to keep track of all the "TRT" connections to properly handle all error conditions. The scaling
problem can be eased using anycast technology to reach the closest TRT relay server.

• The TRT relay server can generate a major security problem, since it can be used as an
intermediate hop to reach IPv4 servers. The served community of a TRT relay server has to be
carefully controlled by packet filtering or access control lists. To reduce the problem site local
addresses could be used for accepting incoming IPv6 packets (Note that within the IETF the re
are currently plans to deprecate site-local addresses and replace them with a new addressing
scheme for “private” addressing within a site).

• TRT requires a specially configured DNS server to run.

• Due to the nature of the TCP/UDP relaying service, it is not recommended to use TRT for
protocols that use authentication based on source IP address (e.g., rsh/rlogin).

• IPsec cannot be used across a TRT relay.

3.3.5. SOCKS

SOCKS [RFC1928] is another example of a transport relay but it is usually referred to as a "proxy
protocol for client/server environments".

A SOCKS proxy works in a similar fashion as a traditional transport relay, but there are minor
differences, which we will now describe.

When a client wants to connect to an application server it first sets up a connection to a well known,
preconfigured proxy server using a special proxy protocol. The client informs the proxy about the
IP address and port number of the application server it wants to communicate with. The proxy
server is now responsible to set up a connection to the application server. As soon as this
connection is up and running the proxy relays packet between the client and application server
hiding the actual connection.

SOCKS include two primary components: a SOCKS server and a SOCKS client library. The server
component is located in the application layer while the client component is located between the
client application and the transport layer.

Before an application client can use SOCKS it has to be modified ("socksified"). This can be done
in two different ways: If the source code is available it can be compiled together with the SOCKS

IST-2001-32603
Deliverable D2.3.3-bis1

 33

client library using a set of pre-processor directives. If on has instead only precompiled binaries for
an application, but the operating system supports dynamic linking of shared libraries one can
change some environment variables in the operating system so that the client uses SOCKS instead
of the default network libraries.

RFC 3089 [RFC3089] presents a SOCKS-based IPv6/IPv4 gateway mechanism that supports both
IPv6 to IPv4 communication and IPv4 to IPv6 communication. This RFC also contains a link to two
different implementation of the mechanism described; one from NEC and one from the KAME-
project.

3.3.6. Application Layer Gateway (ALG)

An Application Layer Gateway (ALG) is a common mechanism to allow users behind firewalls or
behind a NAT gateway to use applications that would otherwise not be allowed to traverse the
firewall or NAT gateway. A common example for an ALG is a classical HTTP proxy like “squid”
or “wwwoffle”.

The working principle of an ALG can easily be explained using an HTTP proxy as a running
example. Normally, a web browser would directly open a connection to a web server if a direct
connection between the client and the server can be established. However, when using an ALG, the
client opens a connection to the ALG (in this case the HTTP proxy) which (if the required content is
not already cached locally from a previous request) then itself establishes a connection to the web-
server acting as a relay for outgoing requests and incoming data. In most cases, the use of an ALG
is almost transparent for the user. Applications that use ALGs have to be configured to do so
beforehand. A web browser has to be configured to use a certain HTTP proxy, for example. There
are also applications that allow automatic configuration of ALGs.

In IPv6-only networks, the ALG functionality can be used to enable hosts in IPv6-only subnets to
establish connections to services in the IPv4-only world and in some cases the other way around as
well. This can be achieved by setting up ALGs on dual-stack hosts which have both IPv6 and IPv4
connectivity.

Figure 3-7: ALG Scenario

IST-2001-32603
Deliverable D2.3.3-bis1

 34

3.4. 6TALK

6TALK is a transition toolbox providing several functionalities of the mechanisms described above
in one implementation. It has been developed by ETRI and, in principle, is based on the NAT-
PT/SIIT mechanism and supports some ALG functions, such as a DNS ALG. The first
implementation of 6TALK was made in 2001 using Linux with kernel v2.4.8. In 2002 it has
migrated to a hardware box with an embedded Linux system on the MPC8260 platform. Regarding
the line interfaces, the 6TALK system supports four ports of 10/100 Ethernet interface with one
serial line port for internal configuration. Also, a web-based interface and command-line interface
have been provided for easy configuration and management. In 2003, it is planned to extend the
functionality to support additional features like the tunneling mechanisms 6to4, DSTM and DSTM
extension functions.

IST-2001-32603
Deliverable D2.3.3-bis1

 35

4. Example Scenarios
This chapter will eventually contain reports on the IPv4 to IPv6 transition as they are taking place at
6NET-partner sites. At present, we cite three examples (Muenster, Southampton and Lancaster).

6NET partners authored a scenario-based review of IPv6 transition tools for the IEEE Internet
Computing journal [IEEE-V6], published in May/June 2003.

The IETF has been undertaking extensive scenario analysis in the IPv6 Operations WG [V6OPS],
in the areas of ISP networks, enterprise networks, unmanaged networks and 3G networks. The
enterprise scenario document [ENT-SCEN] (still a draft document) and analysis (just underway) are
most relevant to this section.

4.1. Campus IPv6 deployment (University of Münster, Germany)

The University of Münster is a large university with a widespread network that uses a large set of
different hardware and network techniques. Thus several considerations had to be taken into
account.

If one wants to integrate IPv6 into a network, the most desirable form of integration is always to run
dual-stack mode on each and every interface and node. However, while support for IPv6 is now
present in most of the products, there are still older hardware and technologies that do not easily
support IPv6 capabilities or don't support them at all.

Especially in large sites, that have been in place for a long time, the network infrastructure has
evolved over a number of years. Such networks often have a modern core, but still use old
technology in some areas and on internal “stubby” edges. In such environments it is practically
impossible to run full dual-stack mode. However, several of the transition methods described in
this cookbook can be used to reach such areas.

In addition, network administrators often hesitate to introduce IPv6, because they fear to destabilize
their IPv4 infrastructure or because they are unfamiliar with IPv6 and IPv6 management. To
overcome these fears it is helpful to start with IPv6 just in a few parts of the network and to leave
the IPv4 infrastructure untouched.

A good method for this is using VLAN technology (802.1q). VLANs are very common and often
used in modern networks, and it is especially easy to integrate IPv6 in these networks. If a dedicated
IPv6 router is used, which just participates in a VLAN group, the IPv4 network can remain
unchanged, and all IPv6 traffic can be routed and managed over a different set of hardware. If no
additional hardware is available, it might be sufficient to use only a small set of the existing routers
to do IPv6 routing.

In the University of Münster, there is a single border router (Cisco 7206) with an uplink to the
6WiN (German academic IPv6 network) and the global IPv6 network. The same router is internally
connected via a trunked Gigabit Ethernet interface to a Catalyst 6500 and the university’s Layer 2
infrastructure.

The Cisco 7206 now acts as an IPv6 router. It is a simple task to add a VLAN interface with a
VLAN-ID of the already existing IPv4 VLANs. Via this interface our IPv6 router sends router
advertisements to the VLAN clients and becomes the default router for IPv6 traffic. The standard
IPv4 traffic still is routed over the default IPv4-only routers.

IST-2001-32603
Deliverable D2.3.3-bis1

 36

Since VLANs are spread throughout the whole university, it is possible to give IPv6 access to
various areas. Still, there are some drawbacks. In those areas where no VLAN technology is
available, but older remnants of, for example, ATM or FDDI infrastructure exist, other methods are
needed to give IPv6 access to the hosts. This can be achieved with various tunnel technologies, but
these are not yet deployed in our network. Also, if there is a "secured" area, one should consider
carefully if IPv6 access should be added to such a VLAN, because when bypassing the IPv4
infrastructure those security mechanisms might get compromised. For example if there are ACL
rules existent for IPv4, these should be applied also for IPv6. This is not always possible, because
the two routing topologies are different. While the IPv4 network usually consists of a set of routers
building a cascading/tree- like core network, our IPv6 "network" here is just a single router. If IPv4
ACL rules rely on some kind of hierarchical routing infrastructure, they probably cannot be rebuilt
for IPv6 in this case, or at least not easily so.

Using VLANs is a smart and easy way to start IPv6 deployment, yet it is far away from a real
production environment. The step to full dual-stack still takes a while to implement. Meanwhile the
current setup can be improved; one of the next steps would be to add a set of two Routers (C7200 or
Cat6500) to every VLAN, which offer redundancy for routing and addressing of clients. Just
sending Router Advertisement could be replaced with DHCPv6 to assign addresses to hosts.
Extending the number of IPv6 routers will require the setup of an internal routing protocol (e.g. IS-
IS or OSPFv3).

Several tunnel technologies have to be deployed internally to reach remote IPv6 subnets (e.g. with
configured tunnels or 6to4) or single IPv6 hosts (e.g. with ISATAP, configured tunnels, 6to4 or a
tunnel broker). These technologies can also be used to reach e.g. Wireless LAN subnets and single
Dial-In users.

These steps will be taken throughout the year 2004 and the experiences will be included in the next
interim and final versions of this cookbook.

4.2. Small academic department, IPv6-only (Tromso, Norway)

This scenario is already described in [D2.3.1].

4.3. Large academic department scenario (University of Southampton)
In this section we begin by describ ing the systems components in this scenario of a large
“departmental” network (1,500+ users, up to 1,000) hosts that wishes to transition to deploy IPv6.
We describe the elements that need to be considered for the transition.

This scenario description assumes no IPv6 is deployed, although in reality the transition at
Southampton is already underway; thus after a review of the systems components, we present an
overview of the status to date, current plans, and also the major remaining obstacles that have been
identified.

4.3.1. Systems Components

The components fall into categories:

• Network components

IST-2001-32603
Deliverable D2.3.3-bis1

 37

• Address allocation components

• Services

• Host and device platforms

• User tools

We discuss these categories below.

In the light of the IETF v6ops WG activity on studying IPv6 network renumbering [RENUMBER],
we also cite components where hard-coded IP(v4) addresses may be found, that may need
consideration in IPv6 networks (this is an incomplete list that will be updated in future releases).

4.3.1.1 Network

Physical connectivity (Layer 2)

The technologies used are:

• Switched Ethernet

• Gigabit Ethernet

• Wireless networking (802.11b)

There is no use of ATM, FDDI or other “older” technologies. The network is purely an Ethernet
one. VLANs are supported by the network equipment.

Routing and Logical subnets (Layer 3)

The hybrid Layer 2/3 routing equipment is Alactel OSR and Omnicore L2/L3, with approximately
15 internal IPv4 subnets (in effect, routed VLANs). There is no specific internal routing protocol
used. There is a static route via the site firewall to the main upstream provider (academic) running
at 1Gbit/s, and there is also a static route to the secondary (low bandwidth) link off-site
(commercial).

Hard coded IP information:

• The IPv4 address space assigned by academic provider

• There is hard-coded IP subnet information

• IP addresses for static route targets

Firewall

The firewall is currently CheckPoint Firewall-1 running on a Sun Solaris platform, just migrating to
a Nokia IP740 hardware platform. There is one internal facing interface, one external facing
interface, and two “DMZ” interfaces, one for wired hosts and one for the Wireless LAN provision.

Hard coded IP information:

• Names resolved to IP addresse sin FW-1 at “compilation” time

• IP addresses in remote firewalls allowing access to remote services

IST-2001-32603
Deliverable D2.3.3-bis1

 38

• IP-based authentication in remote systems allowing access to online bibliographic
resources

IDS

The Snort package is used for intrusion detection.

Management

Some network management is performend by SNMP; there is no specific package for this. There is
a greater emphasis on monitoring than explictly in management.

Monitoring

A number of tools are used, to monitor network usage as well as systems availability, e.g. nocol,
nagios and MRTG. The IBM AWM tool is used for network testing, along with iperf, rude and
crude.

Remote Access

The components supporting remote access are:

• Livingston Portmaster 56K/ISDN dialup

• RADIUS server

• (Microsoft) VPN server

IPv6 access (e.g. for local testbed)

Due to lack of native IPv6 services from the regional network (LeNSE), a static IPv6- in-IPv4 tunnel
is required to the JANET (NREN) IPv6 service.

Hard coded IP information:

• IP address of both tunnel end points

4.3.1.2 Address allocation

The department receives its IPv4 and IPv6 address allocations from the University. For IPv4, the
University has a Class B allocation which is not aggregated under the JANET NREN. For IPv6, the
University receives its allocation from JANET.

IPv6 network prefix allocation

The department currently has approximately 10 Class C IPv4 prefixes from the campus.

For IPv6, JANET has the prefix 2001:630::/32 from RIPE-NCC, as the national academic ISP in the
UK. The University has been allocated 2001:630:d0::/48 by JANET. The department transitioning
will be allocated a /56 size prefix under 2001:630:d0::/48, e.g. 2001:630:d0:100::/56.

In the initial deployment, we expect that IPv4 and IPv6 subnets will be congruent (and share the
same VLANs). The advantage for IPv6 is that subnets will not need to be resized to conserve or

IST-2001-32603
Deliverable D2.3.3-bis1

 39

efficiently utilise address space as is the case currently for IPv4 (as subnet host counts rise and fall
for administrative or research group growth/decline reasons).

Hard coded IP information:

• The allocation from the university

IPv6 Address allocation

It is expected that the network devices will use a combination of address allocation mechanisms:

• Manually configured addresses (in some servers)

• Stateful DHCPv6 (probably in fixed, wired devices and some servers)

• Stateless address autoconfiguration (probably in wireless and mobile devices)

• RFC3041 privacy addresses (in some client devices)

For devices using stateless or RFC3041 mechanisms, a Stateless DHCPv6 server will be required
for other (non-address) configuration options, e.g. DNS and NTP servers.

4.3.1.3 Services

The component services hosted by the departmental network are:

Email

There are three MX hosts for inbound email, and two main internal mail servers. Sendmail is the
MTA. POP and IMAP (and their secure versions) are used for mail access, using the UW-IMAP
open source code. There is an MS Exchange server used by up to 100 users (generally those
wanting shared access to mail spools, e.g. professors and secretaries).

MailScanner is used for anti-spam/anti-virus. This uses external services including various RBLs
for part of its spam checking.

Successful reverse DNS lookup is required for sendmail to accept internal SMTP connections for
delivery.

Hard coded IP information:

• Blocked SMTP servers (spam sources)

Web hosting

Web content hosting is provided either with Apache 1.3.x (open source) or Microsoft IIS 5.0.
Common components used to build systems with are MySQL, PHP 4 and Perl 5; these enable local
tools such as Wikis to be run.

Hard coded IP information:

• .htaccess and remote access controls

• Apache “Listen” directive on given IP address

Databases

IST-2001-32603
Deliverable D2.3.3-bis1

 40

All database systems are presented via a web interface, including the financial systems. In some
cases, e.g. student records, ODBC-like access is required/used in to/out from the department
systems to the campus systems. Databases include: finance records, people, projects and
publications (offered using ePrints).

Directory services

A number of directory service tools are in use:

• NIS (6 servers, all Solaris)

• LDAP

• Active Directory

• RADIUS

DNS

The three DNS servers have recently been upgraded to BIND9. A DNS secondary is held at
another UK university site.

PKI

The department has at least 10 SSL certificates from Thawte, including Web-signing certificates.
No personal certificates are supported by the department (though users may have their own).

NTP

The JANET NREN offers a stratum 0 NTP server. The department also has a GPS-based NTP
server built- in to its own RIPE NCC test traffic server.

USENET news

The news feed is delivered using dnews.

Multicast

There is PIM-SM IPv4 multicast via a dedicated Cisco 7206 router. This supports applications
including the IPv4 AccessGrid conferencing system. A number of bugs in the Alcatel equipment
prevent heavy use of IPv4 Multicast within the department network (thus an IPv6 Multicast solution
is highly desirable). An IPv4 Multicast beacon is used for monitoring Multicast.

Remote login

Remote login access is offered via ssh, with sftp for file transfer. Remote use of telnet and ftp is
denied by the firewall.

File serving

The main file servers are SGI systems, hosting large (multi-TB) standalone RAID arrays. The files
are offered via NFS and Samba to client systems.

IST-2001-32603
Deliverable D2.3.3-bis1

 41

The content distribution server is hosted on such a system (e.g. containing MS software licenced
under the Campus Agreement).

4.3.1.4 Host and device platforms

Server platforms

The following server platforms are in use in the department:

• Windows 2003 server

• Windows 2000 server

• Windows NT

• Solaris 8

• Solaris 9

• RedHat Linux

• SGI Origin 300 (Irix 6.5.x)

Desktop/laptop platforms

The following client platforms are in use in the department:

• Windows 98, 2000, ME, XP

• Linux (various flavours)

• MacOS/X

• BSD (various flavours)

PDA platforms

The following PDA platforms are in use in the department:

• Windows CE/.NET

• PalmOS

• Familiar Linux

• Zaurus

4.3.1.5 User tools/systems

The following tools or systems are used by the department’s user base.

Hardware

Various dedicated systems, for example:

• Networked printers

• Networked webcams

IST-2001-32603
Deliverable D2.3.3-bis1

 42

Mail client

Various, including:

• Outlook (various versions)

• Eudora

• Mutt

• Pine

Web browser

Various, including:

• MS Internet Explorer

• Mozilla

• Safari

• Opera

Conferencing systems

The following conferencing tools are in regular use:

• AccessGrid

• A dedicated H.323 system

• MS Netmeeting

Other collaboration tools

Collaboration tools in regular use include:

• IRC

• Jabber

• MSN Messenger

• cvs

USENET news client

Various, including:

• nn

• Mozilla

Host communications

Specific tools for remote host communications include:

IST-2001-32603
Deliverable D2.3.3-bis1

 43

• X11

• VNC

• PC Anywhere

4.3.2. Transition status

Having described the components, we now outline the steps already taken towards transition at the
scenario site. The focus here is to provide increasing IPv6 functionality in a dual-stack
environment, with the goal of allowing IPv6-only devices to be introduced.

Because the Alcatel switch/router equipment does not route IPv6, an alternative method was
required to deliver IPv6 on the wire to existing IPv4 subnets. To enable this, IPv6 router
advertisements were delivered using an IPv6 router supporting VLAN tagging; this BSD router is
able to inject a different IPv6 prefix onto each IPv4 subnet, using congruent VLANs. This VLAN
method is described by the authors in [VLAN-ID]. As traffic in the site grows, multiple routers
can be dedicated to this task for internal routing, or a router with multiple interfaces. We currently
have four routers with quad Fast Ethernet interfaces. BSD allows multiple-VLAN tagging per
interface, so in light traffic conditions the interface count can be collapsed.

External IPv6 connectivity was acquired using a Cisco 7206, for unicast and multicast (SSM and
PIM-SM), with IPv6 Multicast routed internally onto the VLANs using the BSD IPv6 Multicast
support. The connection to the JANET IPv6 service is via an IPv6- in-IPv4 tunnel until the local
regional network is IPv6-enabled (expected Summer 2004). JANET allocated the University the
prefix 2001:630:d0::/48, from which the department draws a /56 prefix.

The longer-term plan is to use IPv6 firewalling on the Nokia IP740; until then the firewall is an
additional BSD system, on which ports are blocked by default. This is a partially stateful firewall.

Two IPv6-only DNS servers have been run in the past; now the main servers network is IPv6-
enabled the department’s primary BIND9 DNS servers are IPv6-enabled. This includes reverse
delegation of our prefix under 0.d.0.0.0.3.6.0.1.0.0.2.ip6.int and 0.d.0.0.0.3.6.0.1.0.0.2.ip6.arpa (the
.int is being phased out).

The main Linux login server is IPv6-enabled, with ssh logins and sftp file transfer available through
the firewall. Once IPv6 is present on the wire, all that is needed is the firewall hole to be opened
up, an IPv6 AAAA DNS entry added for the login server, and the sshd daemon with IPv6 support
turned on. Offering only secure protocols (and not plain ftp or telnet) can be easier to do when
starting afresh with a new protocol.

Some web sites have been made available using Apache 2, e.g. the IST IPv6 Cluster site, as
operated for the 6LINK project.

The department’s Wireless LAN (over 30 access points) is IPv6 enabled. Some Mobile IPv6 has
been deployed and tested.

A dual-stack Jabber server is deployed.

An H.323 IPv6 conferencing system has been tested (GnomeMeeting for Linux).

IST-2001-32603
Deliverable D2.3.3-bis1

 44

4.3.3. Next steps for the transition

There is a lot to be done. Some imminent next steps include the following:

• A dedicated NTP device with IPv6 capability is just being added. Also, the RIPE NCC test
traffic server can act as an IPv6 NTP server. Thus two GPS-sourced IPv6-capable NTP
servers will soon be online.

• The Sendmail configuration for SMTP handling will be migrated to support IPv6.

• The main department web server will be upgraded to Apache 2 as part of the main redesign
already happening in June 2004. There is an IPv6-enabled e-Prints server already available.

• The IPv6-enabled Snort will be deployed on our IPv6 uplink. We will also provide
reporting on traffic being blocked by the IPv6 firewall to see what kinds of probes are being
performed on a typical IPv6 deployment.

• A DHCPv6 service is required; implementations will be tested in the near future.

• We will be pushing for a native IPv6 service on LeNSE, our regional network. This is
expected to be enabled via 6PE in June 2004.

4.3.4. IPv6 Transition Missing Requirements

In the study for transition, we have identified a number of missing (unavailable) components for
IPv6 transition, including:

1. No IPv6 Layer 3 functionality on the Alcatel OSR/Omnicore equipment (this will be worked
around using the parallel VLAN method, until new IPv6-capable equipment is deployed);

2. Lack of NFS/Samba IPv6 support;

3. Lack of MS Exchange, Outlook or Eudora IPv6 support;

4. AccessGrid is IPv4-only (IPv6-enabling work is to be undertaken in 6NET);

5. Some Apache 2 modules lack Apache 1.3 functionality, hence migrating is a problem in a
small number of cases;

6. No IPv6 support for Active Directory;

7. No IPv6 dnews, so one would have to use inn as a Usenet news server;

8. Lack of supported IPv6 for Windows 98/2000/ME;

9. Lack of supported IPv6 for Irix;

10. Lack of supported IPv6 for various PDA platforms;

11. No method available to offer reverse IPv6 DNS for sendmail to verify autoconfiguring hosts
(prepopulating a 64 bit subnet space is a problem, some wildcard method is required);

12. Lack of MLDv2 snooping in Ethernet switch equipment (thus IPv6 Multicast will flood
subnets);

13. No available IPv6-enabled X11 (there is an xfree but it is encumbered by an unpopular
copyright statement that most distributors find unnacceptable);

This list will be updated in future revisions.

IST-2001-32603
Deliverable D2.3.3-bis1

 45

4.4. University deployment scenario (Lancaster University)

In this section we present the current plans for transition to introduce IPv6 at Lancaster University
(UK), though their ISS networking systems group.

4.4.1. Lancaster University IPv6 Address Allocation

The following is the current version of Lancaster’s IPv6 address allocation plan as of May 2004.
This is subject to change as the process continues and simply incorporates the new notion of logical
categories into the existing plan that has been in use for the last few years.

4.4.1.1 Prefix allocated by JANET

The JANET allocation to Lancaster is a site (/48) prefix: 2001:0630:0080::/48

4.4.1.2 Special Addresses

2001:630:80:0000::/64 Reserved (DNS, services, home network, etc.)

2001:630:80::1 Router

2001:630:80::4 DNS - primary

2001:630:80::7 DNS - secondary

2001:630:80:2000::/49 - Reserved (Future Aggregation)

4.4.1.3 General Address Format

Other than the above special addresses, Lancaster University IPv6 addresses observe the following
format:

<48 UNI> <3 Res> <1 Site> <12 Subnet> <64 Host>

where:

<48 UNI> - 48 bit University prefix 2001:630:80::/48

<3Res> - 3 bits reserved for future aggregation (see above)

<1 Site> - 1 bit identifying the site of the network (provisional)

<12 Subnet> - 12 bits for site subnet

<64 Host> - 64 bit host identifier

IST-2001-32603
Deliverable D2.3.3-bis1

 46

Of the four bits following the university prefix, the first three are reserved for future use while the
last identifies the site (1). As such, all current Lancaster IPv6 address allocations should take the
form:

2001:630:80:1000::/52 (/52 = /48 + 3 reserved bits + 1 bit site code)

The only notable exception to this being the R+D networks (discussed later) that will use the prefix:

2001:630:80:7000::/52

4.4.1.4 IPv6 Subnet Format

All subnets, with the exception of site 7 (Research and Development), use their 12 bits for subnet
identification as follows:

<4 Cat> <8 Physical>

where:

<4 Cat> - 4 bit category identifier specifying role of the network

<8 Physical> - 8 bit for physical subnet identification (building/dept)

hence the full address format for general address allocation is:

<48 UNI> <3 Res> <1 Site> <4 Cat> <8 Physical> <64 Host>

The category group that makes up the first 4 bits of the subnet identifier is reserved for allocating
networks according to the broad roles they perform. This gives a logical rather than geographical
focus on address allocation to simplify management. A provisional list of the groups allocated is
given below.

Code Category Group

0

1 Users

2 Staff

3

4 Offices

IST-2001-32603
Deliverable D2.3.3-bis1

 47

5 Labs

6

7 Wireless

8 Servers

9

A VoIP

B Whiteboard?

C Mobile?

D

E

F Public/untrusted

For example, the offices group prefix would take the form:

2001:630:80:1400::/56

The physical subnet codes (8 bits) will be used to add a geographical identifier to the upper
category identifier. Initially, these have been taken ‘as is’ from the previous address allocation plan
by way of an example and are listed below:

Code Building

00

01 Computing (InfoLab)

02 University House

03 Management School

04 Environmental Science

05 Cartmel

06 Physics

07 Fylde

08 Faraday

09 Bowland

0A Lonsdale

0B Furness

0C Computer Centre (Servers)

0D Music

IST-2001-32603
Deliverable D2.3.3-bis1

 48

0E George Fox

0F

FD Computing (ISS)

FE Library

FF Computer Centre

For example, the prefix for an office network within the Computing (InfoLab) subnet is:

2001:630:80:1401::/64

In practice however, there are likely to be multiple subnets allocated to larger buildings or
departments and as such the 8 bits allocated may be reassigned in some meaningful way to
represent this.

4.4.2. Current Issues – IPv6 Addressing (6NET Feedback Summary)

Following the initial meetings between UCL and ISS, it was decided to consult 6NET members
with regard to the two current issues to gain a wider understanding of the partners who had already
met similar issues. Below is a summary of the original query and the response we received with an
idea of what conclusions can be inferred.

4.4.2.1 IPv6 Address Allocation Plan

“The initial allocation plan could be described as a traditional,
geographical model with the 16 bit subnet identifier specifying networks
on a building/dept basis. However, following discussions with ISS, they
have put forward a logically-oriented approach whereby subnets are
initially allocated according to the role they perform (office, lab,
wireless, etc) before being sub-divided into geographical groups. This
might have the advantage of simplifying the management of the address
space etc.”

There seemed to be a rough consensus on the list as to the merits and validity of a (part) logical
allocation of an enterprise-scope IPv6 prefix as opposed to a purely physical/geographical
allocation. Several partners stated that they also had similar allocation plans for enterprise-scale
deployments subnets allocated into logical groups before being subdivided into subnets. There was
also some discussion of writing an Internet Draft discussing enterprise-scale address allocation as
part of the transition studies within WP2 of 6NET.

IST-2001-32603
Deliverable D2.3.3-bis1

 49

In addition to logical prefix allocation, there was also mention of applying a similar method to the
host identifier. Obviously, addresses will be reserved for well-known services (routers, DNS, etc)
but beyond this the host identifier could be used for identifying/grouping a hosts on the network.
For example, network elements could use the lowest /112 in the host identifier with the next used
for hosts, etc. Under this scheme, a router might be: 2001:630:80:7000::1 and a host would be
2001:630:80:7000::1:1 or something similar.

4.4.2.2 Address Allocation Mechanism (DHCPv6 vs SLAAC)

“Following-on from this, the discussion turned to address allocation
methods, i.e. DHCPv6 vs RA and stateless autoconfiguration. The main
concern from ISS here was the need for maintaining address allocation
information and so they strongly favoured the stateful (DHCPv6) approach.
Having said this however, they remain keen to consider all options but
also have issues with stateless allocation regarding its progress within
the IETF, particularly service discovery (DNS, etc) and address space
management. Advice was/is needed, first with regard to DHCPv6 and
secondly the alternatives with emphasis on practical deployment and
management. Also, an idea would be niche of what is the general consensus
within 6NET with regard to address allocation in this case (enterprise-
type networks). Is DHCPv6 the best way forward as opposed to
autoconfiguration via Router Advertisements? What about stateless
DHCPv6?”

The DHCPv6/SLAAC issue is clearly one that is still a matter for debate among the community at
large however their was at least a strong case to justify ISS’ position that stateful DHCPv6 is the
most suitable candidate for managed IPv6 address allocation in an enterprise-type networks. The
benefits of centralised address allocation and a service discovery method for network management
make DHCPv6 a better choice than SLAAC for this scale of network. Conversely, the case for
SLAAC is the simplified address space allocation and if/when DNS information is incorporated into
RAs, then the service advertisement issue can be largely resolved. From a network management
point of view, the administration of the address space is comparable (if not as simplified) to
DHCPv6.

Essentially, the issue is one of scale (SLAAC being more applicable to smaller networks) and
centralised vs decentralised management may ultimately be a decision taken by network
administrators based on the ‘best fit’ for that case. There is also an argument among SLAAC
advocates that DHCPv6 may represent the ‘easy’ upgrade option whereby an operator chooses what
they are most familiar with and shy away from deploying IPv6 to its full potential. While this is not
the case here (as DHCPv6 is a justifiable solution in enterprise-scale deployments) this is obviously
a situation that should be discouraged.

4.4.3. Lancaster University Fundamental IPv6 Service Support

The following is a report on the IPv6 availability of key services as specified by ISS during the
initial IPv6 deployment planning meeting. With the exception of Microsoft Exchange, IPv6 was
available to some extent in every case. Unfortunately the degree of support currently afforded
ranged from quite mature (native support) to limited (a patch). The exception to this case is
obviously DHCPv6 that will fully support IPv6 but due to the recent nature of the final

IST-2001-32603
Deliverable D2.3.3-bis1

 50

specification, current implementations are relatively immature and this has been reflected in the
report.

For each service, there is a brief introduction to the application and the level of IPv6 support.
Additionally, relevant links are included in the relevant section. There is also an attempt to give
feedback of operational IPv6 experience with each service and any current errors / bugs in the
software. This is provided in the form of configuration examples and articles from internet mailing
lists.

Finally, below are some useful links that summarise the level of IPv6 support for a wide range of
applications.

Current status of IPv6 applications:

http://www.deepspace6.net/docs/ipv6_status_page_apps.html

IPv6 application and patch DB:

http://6net.iif.hu/ipv6_apps

4.4.3.1 BIND9

Link: http://www.isc.org/index.pl?/sw/bind/

BIND version 9 is a major rewrite of nearly all aspects of the underlying BIND architecture. Some
of the important features of BIND 9 are DNS Security, IPv6, DNS Protocol Enhancements, Views,
Multiprocessor Support and Improved Portability Architecture.

For older systems, BIND 8 knows about AAAA records and can answer such requests and if you are
running BIND 8.4.x you can even use IPv6 addresses in your configuration files, as it is able send
and receive IPv6 packets.

Current version is 9.2.3.

Support

Bind 9 natively supports the following IPv6 features:

• Answers DNS queries on IPv6 sockets

• IPv6 resource records (A6, DNAME, etc.)

• Bitstring Labels

• Experimental IPv6 Resolver Library

BIND 9.2 includes a new lightweight stub resolver library and associated resolver daemon that fully
support forward and reverse lookups of both IPv4 and IPv6 addresses.

Missing support:

There are no features missing that we noticed in the context of this scenario.

Operational experience

IST-2001-32603
Deliverable D2.3.3-bis1

 51

For Bind8:

http://www.isi.edu/~bmanning/v6DNS.html

For Bind9:

http://www.linux.ericsson.ca/ipv6/v6dns.html

IPv6 needs to be included during configuration with:

% ./configure -enable-ipv6

Problems/Issues

On some systems, IPv6 and IPv4 sockets interact in unexpected ways. For details, see
doc/misc/ipv6. To reduce the impact of these problems, the server no longer listens for requests on
IPv6 addresses by default. If you need to accept DNS queries over IPv6, you must specify "listen-
on-v6 { any; };" in the named.conf options statement.

4.4.3.2 DHCPv6

Links: http://www.dhcpv6.org

http://dhcpv6.sourceforge.net/

DHCPv6 is a stateful address autoconfiguration protocol for IPv6, a counterpart to IPv6 stateless
address autoconfiguration protocol. It can either be used independently or it can coexist with its
counterpart protocol. This protocol uses client/server mode of operation but can also provide
support through a Relay Agent.

Two ‘types’ of DHCPv6 has been defined, stateful and stateless the first of which conforms to the
standard model whereby addresses are allocated and mappings kept within the server. Stateless
DHCP allows address allocation to be done via autoconfig with the server advertising network
service addresses (DNS etc).

DHCPv6 is a fundamental IPv6 service. The DHCPv6 specification was published as RFC3315, the
DNS specification as RFC3646 and the Prefix Delegation as RFC3633. Although the specification
for DHCPv6 has been completed, there is still much debate within the community as to the proper
solution to IPv6 address allocation.

Current version – sourceforge is 0.85

Current version – NEC is 0.1?

Support

Native support for IPv6

NEC distributes a DHCPv6 Server, Client and Relay Agent full implementation

NEC supports: - RFC3315, RFC3633, RFC3646,

draft- ietf-dhc-dhcpv6-opt-timeconfig-03.txt,

draft- ietf-dhc-dhcpv6-stateless-04.txt

IST-2001-32603
Deliverable D2.3.3-bis1

 52

Sourceforge’s DHCPv6 supports: -

draft- ietf-dhc-dhcpv6-28.txt,

draft- ietf-dhc-dhcpv6-opt-prefix-delegation-04.txt,

draft- ietf-dhc-dhcpv6-opt-dnsconfig-03.txt,

draft- ietf-dhc-dhcpv6-stateless-00.txt

Implementations also available in router software (Juniper among others).

Missing support

The Sourceforge implementation is currently not using the final DHCPv6 spec (RFC 3315).

Operational experience

Results of DHCPv6 interop test (expired IETF I-D):

http://www.watersprings.org/pub/id/draft- ietf-dhc-dhcpv6-interop-01.txt

4.4.3.3 Exim

Link: http://www.exim.org/

Exim is a message transfer agent (MTA) developed at the University of Cambridge for use on Unix
systems connected to the Internet. It is freely available under the terms of the GNU General Public
Licence.

Exim now supports native IPv6.

Current version is 4.32.

Support

This application natively supports IPv6

Its status is currently “experimental” however.

Missing support
Current problems:

• Finding the complete list of active interfaces gives only those configured with IPv4
addresses. It is best, therefore, to use Exim's local_interfaces option to specify all the
interfaces explicitly, both IPv4 and IPv6.

• Ident callbacks have been made to work by modifying libident, but not yet fully tested on

v6-to-v6 connections.

Operational experience

Some issues in the past with Debian Linux are believed to be patched.

IST-2001-32603
Deliverable D2.3.3-bis1

 53

Exim contains code for use on systems that have IPv6 support. Setting HAVE_IPV6=YES in
Local/Makefile causes the IPv6 code to be included; it may also be necessary to set
IPV6_INCLUDE and IPV6_LIBS on systems where the IPv6 support is not fully integrated into the
normal include and library files.

Problems/Issues

“Using SuSE 8.1, some of the daemon packages (eg Apache2, BIND9, ssh)
will listen on and use ipv6 sockets, but sendmail does not. I know that
recent sendmails can support ipv6 as a compile time option.”

4.4.3.4 Microsoft Exchange

No IPv6 support at this time

4.4.3.5 IMAP-Pine

Link: http://www.washington.edu/pine/

http://www.math.washington.edu/~chappa/pine/readme/ipv6.readme

Pine is a tool for reading, sending, and managing electronic messages. Pine was developed by
Computing & Communications at the University of Washington. Though originally designed for
inexperienced email users, Pine has evolved to support many advanced features, and an ever-
growing number of configuration and personal-preference options. Pine includes an IMAP (mail
server) implementation.

Current version is 4.58,

Support

There is a patch (Beta) that enables IPv6 support for this application (from the Euro6IX project).

Successfully tested on :

 - i386-suse80-linux:

 - i386-freebsd5.1

 - i386-sun-solaris58

Problems compiling

 - mips-sgi- irix65

Operational experience

Enabling an IMAP IPv6 server. (On i386-redhat-7.3)

You need the following files: imap-2001a-10.i386.rpm

1. Install the rpm package.

IST-2001-32603
Deliverable D2.3.3-bis1

 54

 bash-2.04$ su

 # rpm - i /path/to/imap-2001a-10.i386.rpm

 # rpm -q -l imap

2. Enable it at the xinet.conf

 # vi /etc/xinet.d/imap

 Just edit the line: disable=no

3. You will need to restart the xinetd daemon.

 #/etc/init.d/xinetd --restart

4.4.3.6 SQUID

Links: http://www.squid-cache.org/

http://devel.squid-cache.org/ipv6/

Squid is a full- featured Web proxy cache designed to run on Unix systems. The Squid developers
have already IPv6 enabled the current developer version 2.5 and the patch is against the last version
of CVS sources.

Current version is 2.5.

Support

There is a patch that enables IPv6 support for this application.

It is pretty rudimentary; last progress was listed as 2001:

“Rudimentary testing shows that both client side and server side IPv6 support is somewhat
functional for http. IPv4 FTP works (mostly?). ACLs now work, the internal DNS resolver
appears to largely function.”

As of March 2003:

“Unfortunately there is no developer working on the IPv6 support at the moment so it has
rotted away a little.”

Missing support

Todo:

• Make linux-netfilter work for IPv4 when using --enable- ipv6

• Change URI code to handle http://[fec0::1]/ style URIs.

• Partially implement RFC 2428 - EPRT command in particular for IPv6 FTP support

IST-2001-32603
Deliverable D2.3.3-bis1

 55

• Consider the advantages of changing the patch to support IPv6 in best-current-practice
fashion, i.e. like Itojun-san's suggestions. The biggest problem is squid delves into the
details of IP a little more than most network applications.

Operational experience

Compilation has proven to be problematic on Solaris 8.

4.4.3.7 Apache

Links: http://www.apache.org/

http://httpd.apache.org/docs-2.0/new_features_2_0.html

The most deployed HTTP server on the Internet, Apache 2.0 features native IPv6 and https support.
Native apache support for IPv6 by maintainers since 2.0.14. Patches for the older 1.3.x series are
not current and shouldn't be used in a public environment, but available at
http://www.kame.net/Misc.

Current version is 2.0.49.

Support

Compiles normally with native IPv6 support.

On systems where IPv6 is supported by the underlying Apache Portable Runtime library, Apache
gets IPv6 listening sockets by default. Additionally, the Listen, NameVirtualHost, and VirtualHost
directives support IPv6 numeric address strings (e.g., "Listen [fe80::1]:8080").

Operational experience

A growing number of platforms implement IPv6, and APR supports IPv6 on most of these
platforms, allowing Apache to allocate IPv6 sockets and handle requests which were sent over IPv6.

One complicating factor for Apache administrators is whether or not an IPv6 socket can handle both
IPv4 connections and IPv6 connections. Handling IPv4 connections with an IPv6 socket uses IPv4-
mapped IPv6 addresses, which are allowed by default on most platforms but are disallowed by
default on FreeBSD, NetBSD, and OpenBSD in order to match the system-wide policy on those
platforms. But even on systems where it is disallowed by default, a special configure parameter can
change this behavior for Apache.

On the other hand, on some platforms such as Linux and Tru64 the only way to handle both IPv6
and IPv4 is to use mapped addresses. If you want Apache to handle IPv4 and IPv6 connections with
a minimum of sockets, which requires using IPv4-mapped IPv6 addresses, specify the --enable-
v4-mapped configure option. --enable-v4-mapped is the default on all platforms but
FreeBSD, NetBSD, and OpenBSD, so this is probably how your Apache was built.

If your platform supports it and you want Apache to handle IPv4 and IPv6 connections on separate
sockets (i.e., to disable IPv4-mapped addresses), specify the --disable-v4-mapped
configure option. --disable-v4-mapped is the default on FreeBSD, NetBSD, and
OpenBSD.

IST-2001-32603
Deliverable D2.3.3-bis1

 56

Problems/Issues

Apache 2.0 versions 2.0.35 to 2.0.46 have a bug that can cause a remote Denial of Service. When a
client requests that proxy ftp connect to a ftp server with IPv6 address, and the proxy is unable to
create an IPv6 socket, an infinite loop occurs.

4.4.3.8 OpenSSH

Link: http://www.openssh.org/

OpenSSH was one of the first packages to provide native IPv6 support in 2000. Both client and
server IPv6 ssh implementations are available via OpenSSH. (SSH.com's SSH client and server is
also IPv6 aware now and is free for all Linux and FreeBSD machine regardless if used for personal
or commercial use.)

Current version is 3.8

Support

Native support in both server and client implementations is implemented.

Operational experience

(LINUX)

For enabling option to bind on IPv6 port edit the configuration file: /etc/ssh/sshd_config:

#ListenAddress 0.0.0.0

ListenAddress ::

Add "-6" in startup script to enable IPv6: /etc/rc.d/init.d/sshd

/usr/sbin/sshd -6 && success "sshd startup" || failure "sshd
startup

Current versions of openssh are IPv6-ready. Depending on configuring it has two types of behavior.

• --without-ipv4-default: the client tries an IPv6 connect first automatically and falls back to
IPv4 if IPv6 is not working

• --with- ipv4-default: default connection is IPv4, so an IPv6 connection must be forced

These notes will be updated by Lancaster as their deployment plans are refined.

4.5. Other scenarios

We plan to add other scenarios in the next iteration, including:

• Scattered dual-stack devices in a university, with or without a dual-stack router on campus
(early user experimentation), and/or a small testbed in a university, possibly IPv6 only
(contained network);

IST-2001-32603
Deliverable D2.3.3-bis1

 57

• Some schools may get a single IPv4 address + NAT for broadband access to the school
limiting the set of applications they could deploy. Adding IPv6 + Global addressing opens
the way to run many applications;

• Home user networks (staff, students) wanting connectivity, possibly behind a NAT, possibly
single machine, possibly dynamic IPv4 address.

The latter case may be a good example for use of the JOIN IPv6 OpenVPN access method.

4.6. Summary of unexpected results and unforeseen difficulties

The next iteration of this document will include a section on key lessons learnt from the transition
experiences. This will be a focus also of the joint transition case studies with the Euro6IX project
(including the UMU and UPM universities).

4.7. Summary of tradeoffs made in solutions chosen

The next iteration of this document will include a section on tradeoffs made in solution selection
based on the transition experiences. This will be a focus also of the joint transition case studies
with the Euro6IX project (including the UMU and UPM universities).

This will include issues such as whether methods should bypass site administrator knowledge; i.e.
how the administrators can perceive demand when tunnel methods are happening without their
knowledge.

6NET has contributed a number of Internet Drafts in this general topic of analysis of tradeoffs and
considerations of architectures, namely [STEP], [TRANSARCH], [TUNNEVAL], [CONSIDER].

5. Configuration Examples: Dual-Stack
This Chapter, as well as the following two, should be the main source of information for people
reading this cookbook as it includes installation and configuration examples for most of the
implementations for the tools and mechanisms described in Chapter 3. There are no more
explanations about the theoretic functionality of the tools to be found here.

Generally, adding IPv6 functionality to existing IPv4 interfaces – if it is supported in the operating
system/on the platform – is often a simple task. Nevertheless, as one basically adds a complete new
IPv6 network living next to the existing IPv4 network, one has to think about internal and maybe
external routing structures. These may differ from those used in IPv4, as not all of the current IGPs
(like OSPFv2) are capable to route IPv6 traffic. Instead it may happen that new protocols (e.g.
OSPFv3) need to be deployed.

Information on how to switch on IPv6 on any platform is included in appendix B (chapter 10) of
this document. As IPv6 becomes more and more common it is likely that this information will
become unnecessary. Very soon all operating systems or router platforms will have IPv6 switched
on by default.

Configuration examples for routing protocols are covered within Deliverable D3.1.2 of work
package 3 in the 6NET project. We’d like the reader to refer to that document to learn how to set up
inter- or intra-domain-routing with either iBGP, OSPFv3, IS-IS or RIPng for most platforms.

IST-2001-32603
Deliverable D2.3.3-bis1

 58

5.1. Dual-stack VLANs

Using VLANs for IPv6 site deployment is not really a transition tool but it is a method that is
becoming more commonly used for dual stack IPv6 deployment in site networks because it is so
easy if the network already makes use of the VLAN technique. One just injects (new) IPv6
subnets/links into the existing IPv4 VLANs. In a smaller size network, there may be 10-15 VLANs,
each just carrying traffic for one IPv4 subnet. In such situations, one can take advantage of the
VLAN segregation of traffic to connect IPv6 routers such that a single IPv6 prefix (a /64 prefix) is
injected into each IPv4 VLAN that requires dual-stack networking. Hosts in such subnets can then
autoconfigure IPv6 addresses in addition to their IPv4 addresses or make use of DHCPv6 if the
service is implemented. In this case, the IPv6 routing hierarchy may be IPv6-only, and exist in
parallel to the IPv4 network infrastructure. The IPv6 link off-site may also be separate.

It is important in such an instance that IPv6 filters and access control lists are deployed to prevent
IPv6 being a back door for hackers to enter the (IPv4) network.

See [VLAN-ID], an IETF I-D produced within the 6NET project, for more details.

5.1.1. Configuring an interface on a Linux host to become part of a VLAN

The following example shows how a physical interface of a linux host (i.e. eth0) is trunked to
become part of a tagged VLAN. The only prerequisite is that support for VLANs needs to be
switched on before compiling the kernel.

ip link set <trunked interface> up;

/usr/sbin/vconfig add <trunked interface> <VLAN-ID>

ip link set <trunked interface>.<VLAN-ID>

6. Configuration Examples: IPv6 Tunneling Mechanisms

6.1. Manually Configured Tunnels

The necessary configuration to manually configure IPv6-to-IPv4 tunnels in different operating
systems and router platforms is presented in the following subsections.

6.1.1. Cisco IOS platform

Manually configuring an IPv6- in-IPv4 tunnel on a Cisco IOS platform is not much different from
setting up an IP-over-IP tunnel. One creates the interface by simply changing to the configuration
mode by typing:

configure terminal

IST-2001-32603
Deliverable D2.3.3-bis1

 59

There one can create the interface:

(config)# interface Tunnel 0

Note that the number of the Tunnel can be any number from 0 up to about 65000. To configure the
interface with an IPv6 address on has two possibilities:

(config-if)# ipv6 address <full ipv6-address>/<subnet-length>

or

(config-if)# ipv6 address <prefix>/<prefix-length> eui-64

The first possibility will result in the interface being configured with the exact address one has
specified. Note that the length of the subnet can be set as 128. Using the second possibility one
specifies a prefix, which may be up to 64 bits long. The full IPv6 address the interface will then be
configured with includes (for example) the MAC address of the hardware in the interface identifier
as specified in the EUI-64 standard.

The tunnel source can either be specified with the name of the IPv4 source or by directly stating the
IPv4 address of the local tunnel endpoint, e.g:

(config-if)# tunnel source 128.176.191.82

or

(config-if)# tunnel source FastEthernet0/0

The tunnel destination is simply set up by:

(config-if)# tunnel destination <IPv4 address of remote tunnel endpoint>

Finally one has to set the tunnel mode to “ipv6ip” to specify the correct encapsulation and
decapsulation.

(config-if)# tunnel mode ipv6ip

With the “ipv6 route” command one can configure routes for tunnel interfaces just like with any
other interface.

IST-2001-32603
Deliverable D2.3.3-bis1

 60

6.1.2. Juniper (JunOS)

If you have Tunnel PIC installed in your Juniper router, you can configure IPv6 over IPv4 tunnels.
To do this, you configure a unicast tunnel across an existing IPv4 network infrastructure.

Configuration example:

Router #1:
 [edit]

 interfaces{

 gr-1/0/0{

 unit0{

 tunnel{

 source 128.176.191.82;

 destination 128.176.184.7;

 }

 family inet6{

 address 3ffe:400:ffff::ffff:1/112

 }

 }

 }

 }

Router #2:
 [edit]

 interfaces{

 gr-1/0/0{

 unit0{

 tunnel{

 source 128.176.184.7;

 destination 128.176.191.82;

 }

 family inet6{

 address 3ffe:400:ffff::ffff:2/112

 }

 }

 }

 }

IST-2001-32603
Deliverable D2.3.3-bis1

 61

Configured tunnels require IPv6 routing. For that purpose one can either create static routes r add
the tunnel interface to OSPFv3 or RIPng.

6.1.3. Extreme (ExtremeWare IPv6)

You can configure a tunnel between a dual stack host and a dual stack router or between two dual
stack routers.

IPv6- in-IPv4 tunnelling requires an active IPv4 interface on the switch. The address of this interface
is used for the configuration of the tunnel. If that particular IPv4 interface goes down, tunnelling
fails even if other IPv4 interfaces are available on the switch.

To avoid this situation, we create an IPv4 VLAN with loopback enabled. Even if all of the ports on
the VLAN go down, the VLAN stays up and so does the tunnel. At the cost of an additional VLAN
on each IPv6- in-IPv4 router and advertisement of the additional IPv4 address, you ensure greater
tunnel stability.

Configuration of Switch A:

create vlan to_router_b

configure vlan to_router_b add ports 1-10

configure vlan to_router_b ipaddress 128.176.191.82/24

enable loopback-mode to_router_b

create tunnel 6in4_to_b ipv6-in-ipv4 destination 128.176.184.7 \

source 128.176.191.82

configure tunnel 6in4_to_b ipaddress ipv6 3ffe:400:ffff::ffff:1/112

enable ipforwarding ipv6 6in4_to_b

Configuration of Switch B:

create vlan to_router_a

configure vlan to_router_a add ports 1-5

configure vlan to_router_a ipaddress 128.176.184.7/24

enable loopback-mode to_router_a

create tunnel 6in4_to_a ipv6-in-ipv4 destination 128.176.191.82 \

source 128.176.184.7

configure tunnel 6in4_to_a ipaddress ipv6 3ffe:400:ffff::ffff:2/112

enable ipforwarding ipv6 6in4_to_a

IST-2001-32603
Deliverable D2.3.3-bis1

 62

6.1.4. 6WIND (SixOS)

While essentially being nothing more than a PC running some version of FreeBSD, 6WIND routers
come with their own command-line interface (CLI). For the purpose of this example we assume one
has just logged on to the rooter as user “admin”.

1. First one has to go into the configuration mode for the running configuration:

sixwind{} edit running

2. Change to the “migration context”:

sixwind{running} mig

3. Setup the IPv6- in-IPv4 tunnel:

sixwind{running-mig} 6in4 <tun-#> <local v4> <remote v4> <local v6> \

 <remote v6>

As an actual example:

 sixwind{running-mig} 6in4 0 128.1.2.3 68.2.3.4 3ffe:pTLA:y::xxx:2 \

 3ffe:pTLA:y::xxx:1

With this configuration the 6WIND router will create two /128 routes for both of the IPv6 addresses
of the tunnel endpoints.

4. Leave the “migration context”:

sixwind{running-mig} exit

We assume that the tunnel is going to be the only IPv6 connection for the 6WIND router (e.g., if it
is the IPv6 access router for the site). Therefore the IPv6 default route needs to be set to this tunnel.

5. Change to the “routing context”:

sixwind{running} rtg

IST-2001-32603
Deliverable D2.3.3-bis1

 63

6. Configure the IPv6 default route:

sixwind{running-rtg} ipv6_defaultroute <local v6 IP>

In our example:

 sixwind{running-rtg} ipv6_defaultroute 3ffe:pTLA:y::xxx:1

7. Leave the “routing context”:

sixwind{running-rtg} exit

8. Apply the configured changes to the running configuration:

sixwind{running} addrunning

9. Exit the configuration mode:

sixwind{running} exit

Note: If you have performed step 8 immediately before typing in “exit” here everything should be
fine. Should you have configured other changes after step 8 before exiting the configuration context
the router will ask you if you want to apply these changes to the running configuration as well.
Type in “y” if you want the changes to be added to the running configuration, otherwise answer
“n”, in which case all changes after the last “addrunning”-command will be lost.

10. Save changes to the startup configuration so the tunnel will still be configured after the next
reboot:

sixwind{} copy conf running start

This is it.

6.1.5. Windows XP

Configuring static tunnels on Windows XP hosts can be performed by the following steps:

IST-2001-32603
Deliverable D2.3.3-bis1

 64

1. Create an IPv6- in-IPv4 tunnel, named myTunnel:

netsh interface ipv6 add v6v4tunnel myTunnel 195.251.29.15 \

 195.251.29.243 enable

2. Add an IPv6 address to the tunnel:

netsh interface ipv6 add address “myTunnel” 3ffe:2d00:1::1

3. Add a default route to the remote IPv6 address of the tunnel, e.g. 3ffe:2d00:1::2, so that all
IPv6 traffic goes through the tunnel:

 # netsh interface ipv6 add route ::/0 “myTunnel” 3ffe:2d00:1::2

6.1.6. Windows 2000

Microsoft IPv6 Technology Preview software should initially be installed to the Windows 2000
host (See Appendix B). After rebooting the system, three IPv6 enabled interfaces are created
automatically. The “Tunnel Pseudo-Interface” can be use for creating static tunnels between to
hosts, as follows:

1. Assign an IPv6 address to tunnel interface:

C:>ipv6 adu 2/3ffe:2d00:1::1

2. Create a static route entry that it points to remote IPv4 address of the tunnel:

C:>ipv6 rtu ::/0 2/::194.177.210.38

6.1.7. Linux

The easiest way to set up a tunnel on a Linux host is using the “ip”-command. Modern distributions
usually include IPv6 functionality not only with this command but in general as well.

To set up an IPv6- in-IPv4 tunnel usually a “sit” interface is created:

ip tunnel add sit1 remote <IPv4 address of remote tunnel endpoint> \

local <local IPv4 address>

IST-2001-32603
Deliverable D2.3.3-bis1

 65

Note that “sit1” is the name of the sit interface. The “local IPv4 address” is the address of the
network interface to be used for the incoming IPv4 traffic which contains the encapsulated IPv6
datagrams.

After configuring the interface it has to be brought up:

ip link set sit1 up

To equip interface sit1 with an IPv6 address other than the autoconfigured link- local address one
can use the following command:

ip add addr <IPv6 address>/<subnet-length> dev sit1

After these commands the output from “ifconfig sit1“ should look somewhat like:

sit1 Link encap: IPv6-in-IPv4

 inet6 addr: 3ffe:401:1::fff0:2/112 Scope:Global
 inet6 addr: fe80::80b0:b807/128 Scope:Link
 UP POINTOPOINTRUNNING NOARP MTU:1480 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors: 0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

Creating tunnels and adding IPv6 addresses can also be achieved with the command “ifconfig”, but
this is an old-fashioned style and should not be used in newer Linux distributions.

6.1.8. Solaris 8

The steps to manually configure a tunnel interface on a Solaris 8 workstation are the following:

1. Create the file /etc/named/hostname6.ip.tun0, which is executed every time the workstation
bootstraps. Each line of the file is used as input by the ifconfig command, and thus, the
appropriate command syntax is required.

2. The first line in the /etc/named/hostname6.ip.tun0 file contains the IPv4 source and the
destination addresses of the tunnel. For example, if the source and destination addresses are
150.140.21.45 and 194.177.63.238, respectively, the first line should be:

tsrc 150.140.21.45 tdst 194.177.63.238

3. The second line in the /etc/named/hostname6.ip.tun0 file configures the IPv6 addresses of
the tunnel endpoints. The first IPv6 address belongs to the local host and the second to the
peer host. For example:

IST-2001-32603
Deliverable D2.3.3-bis1

 66

addif 3FFE:2D00:1::1 3FFE:3D00:1::2 up

4. Restart the script /etc/init.d/inetinit

5. Set the IPv6 default route to the remote tunnel endpoint (if the tunnel is the only IPv6-
connection of the host:

add –inet6 default 3FFE:3D00:1::

6.1.9. FreeBSD, NetBSD and Darwin/Mac OS X

Tunnels are configured via the “ifconfig” command with little to no variation on all operating
systems that have incorporated the KAME project’s IPv6 stack, including FreeBSD, NetBSD and
Darwin/Mac OS X (OpenBSD could most likely be added to this list as the same instructions would
most likely work on it, too, but this has not yet been verified by the authors).

The next installation steps should be followed in case of using ifconfig:

0. Check whether a “gif” interface exists using ifconfig. Result is either:
ifconfig gif0

ifconfig: interface gif0 does not exist

 or
 # ifconfig gif0

 gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280

1. Create the interface:

ifconfig gif0 create

and audit its state:

ifconfig gif0

 gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280

This method works in FreeBSD and NetBSD, but not on Mac OS X even though it is documented
in the manual pages for ifconfig on Darwin 6.8/Mac OS X 10.2.8 (aka Jaguar) as well as on Darwin
7.2.0/Mac OS X 10.3.2 (aka Panther) and in the usage information printed by the ifconfig command
itself. However, Mac OS X comes standard with gif0 created so if only a single tunnel is needed
this poses no problem.

IST-2001-32603
Deliverable D2.3.3-bis1

 67

2. Assign the two (remote and local) IPv4 addresses of the tunnel endpoints, e.g.:

 # ifconfig gif0 tunnel 130.1.2.3 134.5.6.7

3. Assign the local IPv6 addresses of the tunnel:

 # ifconfig gif0 inet6 alias <Local_IPv6_TUNNEL_ ADDR> \

prefixlen <Length of prefix for tunnel address>

 For example:

 # ifconfig gif0 inet6 alias 2001:DEAD:BEAF:ABBA::1 prefixlen 64

Note that the “alias” keyword is not necessary on all BSD OSes, but it never hurts to include it.
The prefix- length may be omitted when it its equal to 64 since 64 is the default. When the user has
only one or a few tunnels, it is recommended to use a 64 –bit prefix- length as that will typically also
be used for other (less virtual) interfaces. However, longer (more specific) prefix- lengths are not a
problem and may be an attractive chose for tunnel-brokers hosting many tunnels from a limited
address space. It is wise to avoid prefixes longer than 126 bits though as some implementations
have (had) problems with 127 and 128 bit long prefixes, even though the author is not currently
aware of any such problems in recent releases of an operating system. Still, taking a prefix of 120
bit, 126 bit or even 112 bit length hardly wastes address space and my easily be worth it to avoid
potential troub le, however unlikely the problem may be.

In the above commands it is also possible to specify both source and destination IPv6 address of the
tunnel but it is not necessary as the routing subsystem does not need to know the remote end’s
global address (it is enough to be able to talk to the next hop using link- local addressing). For
administrative reasons it may be attractive to assign the destination address, too, though. Some non
KAME derived implementations even require the global IPv6 addresses of both tunnel endpoints to
be set. This is accomplished by substituting the above command with for example:

 # ifconfig gif0 inet6 alias 2001:DEAD:BEAF:ABBA::1 \

 2001:DEAD:BEAF:ABBA::2 prefixlen 128

Actually, as routing over an interface can work without assigning global addresses at all, it should
not be necessary to assign any of them. Indeed, KAME derived IPv6 stacks do not require global
IPv6 addresses to be assigned to a tunnel interface (as tested by the author with NetBSD and
FreeBSD 3.x). In that case, one needs to explicitly add a route over the tunnel interface to the link-
local address of the remote tunnel end (or run a routing protocol that will figure it out for itself
using the well-known multicast address). For example, to add a default route over a tunnel interface
to a remote end with link- local address fe80::2, one would add a route like this:

 # route add –inet6 default fe80::2%gif0

IST-2001-32603
Deliverable D2.3.3-bis1

 68

or
 # route add –inet6 default –ifp gif0

Such unnumbered tunnels will typically only make sense when both tunnel endpoint use a KAME
derived IPv6 stack as other implantations usually don’t support unnumbered tunnels.

6.1.9.1 Alternative with FreeBSD

As an alternative to the above way of creating a manual IPv6- in-IPv4 tunnel, Free BSD also offers
the possibility to set up a tunnel by only modifying the contents of /etc/rc.conf file such that the
tunnel is automatically created and configured at boot time. Add the following lines to the rc.conf
file:

gif_interfaces="gif0"

gifconfig_gif0="130.1.2.3 134.5.6.7" \

ipv6_ifconfig_gif0="2001:DEAD:BEAF:ABBA::1 \

2001:DEAD:BEAF:ABBA::2 prefixlen 128"

6.1.9.2 Alternative with NetBSD

With NetBSD, one can easily configure a tunnel interface by making a corresponding
/etc/ifconfig.<ifn> file, where <ifn> is the name if the interface (i.e. gif0).

For the example above one would create a file /etc/ifconfig.gif0 containing the following
lines:

 create

 tunnel 130.1.2.3 134.5.6.7

 inet6 2001:DEAD:BEAF:ABBA::1 2001:DEAD:BEAF:ABBA::2 prefixlen 128

6.2. Tunnel

6.2.1. OpenLDAP/ssh-based Tunnel Broker

The University of Southampton has developed its own tunnel broker implementation, using
FreeBSD for the router (tunnel server) platform. The broker runs on an Apache2 Linux web server
and uses ssh to execute tunnel creation commands from the broker to the server. The tunnel
information is held in an OpenLDAP database. All these components run over IPv6.

IST-2001-32603
Deliverable D2.3.3-bis1

 69

6.3. 6over4

6.3.1. Microsoft Implementations

6over4 is included in the MSR IPv6 stack, Windows XP and the .NET Server family but is disabled
default. By the very nature of the 6over4 transitioning method, an IPv4 multicast enabled
infrastructure must be available for 6over4 to be able to work.

To enable 6over4 type:

netsh interface ipv6 set global 6over4=enabled

at the command prompt. This will create a new 6over4 tunneling pseudo- interface for each IPv4
address assigned to the host.

6.4. 6to4

6.4.1. Cisco platform (as client and relay)

A Cisco router running a version of IOS that includes 6to4 support can either become a 6to4 client,
if it only has IPv4 connectivity or, if the router already has global IPv6 connectivity, become a 6to4
relay.

6.4.1.1 Client configuration

To configure a Cisco router as a 6to4 client is rather easy and can be done by setting up a tunnel as
follows:

 interface Tunnel64

 no ip address

 no ip redirects

 ipv6 unnumbered FastEthernet0

 tunnel source FastEthernet0

 tunnel mode ipv6ip 6to4

One also has to set up the following route:

 ipv6 route 2002::/16 Tunnel64

IST-2001-32603
Deliverable D2.3.3-bis1

 70

6.4.1.2 Cisco configuration as a 6to4 relay

If the tunnel and route is configured as described above on a router, which also has outside
connectivity to the rest of the IPv6 Internet, this router automatically functions as a 6to4 relay and
can thus provide outside connectivity to all hosts connected to it by 6to4.

6.4.2. Extreme (ExtremeWare IPv6)

Dual stack Extreme switches (with a globally unique IPv4 address) can be configured to
communicate with other isolated IPv6 domains using the 6to4 automatic tunnelling mechanism.
Supposing that the two (layer 3) switches A and B are access routers of such domains willing to
make use of 6to4, they should be configured as follows below.

Like configured tunnels 6to4 tunnelling requires an active IPv4 interface on the switch. With 6to4
the address of this interface is embedded in the IPv6 address of the tunnelling interface. If that
particular IPv4 interface goes down, tunnelling fails even if other IPv4 interfaces are available on
the switch.

To avoid this situation, we create an IPv4 VLAN with loopback enabled. Even if all of the ports on
the VLAN go down, the VLAN stays up and so does the tunnel. At the cost of an additional VLAN
on each 6to4 router and advertisement of the additional IPv4 address, you ensure greater tunnel
stability.

Switch A:

create vlan to_router_b

configure vlan to_router_b add ports 1-10

configure vlan to_router_b ipaddress 128.176.191.82/24

enable loopback-mode to_router_b

create tunnel 6to4_to_b 6to4

configure tunnel 6to4_to_b ipaddress 2002:80b0:b807::1/16

enable ipforwarding ipv6 6to4_to_b

Switch B:

create vlan to_router_a

configure vlan to_router_a add ports 1-5

configure vlan to_router_a ipaddress 128.176.184.7/24

enable loopback-mode to_router_a

create tunnel 6to4_to_a 6to4

configure tunnel 6to4_to_a ipaddress 2002:80b0:bf52::1/16

enable ipforwarding ipv6 6to4_to_a

IST-2001-32603
Deliverable D2.3.3-bis1

 71

6.4.3. Windows XP

First IPv6 functionality should be enabled on the Windows XP host as described in Appendix B. If
there is no native IPv6 on the LAN the host is connected to, the operating system configures a “6to4
Tunneling Pseudo-Interface” and adds a default route pointing to Microsoft’s Research 6to4 relay
router, i.e. 6to4.ipv6.microsoft.com. This allows you to initially test the newly enabled IPv6 stack
and its functionality through the “tracert6” command while pointing to the above host.
Unfortunately, automatically-enabled configuration will not allow you to establish a connection to
any other IPv6 host or networks.

In order to establish connectivity with other IPv6 networks, such as 6NET, the 6to4 tunnel should
be configured to point to a free 6to4 relay router. For example, the following command

netsh interface ipv6 6to4 set relay x.y.w.z

points the host’s 6to4 tunnel to the 6to4 relay router with the IPv4 address x.y.w.z.

In order for this 6to4 client to serve a whole subnet as IPv6 default router, the /48-prefix, the host
configured itself with needs to be advertised on the normal LAN interface. Also the default route
needs to be specifically set to be published:

 # netsh interface ipv6 add route 2002:<IPv4 address in hex>::/48 \\

<number of normal LAN interface> publish=yes \\

validlifetime=<valid lifetime of route> \\

preferredlifetime=<period for which the route is preferred>
 # netsh interface ipv6 set route ::/0 \\

<name or number of 6to4 interface> publish=yes

6.4.4. Windows 2000

A Windows 2000 host can be manually configured to access IPv6 sites through the 6to4 tunneling
mechanism. The “ipv6” utility, which is included in the “Microsoft IPv6 Technology Preview”
software, is used for setting the appropriate configuration to the 6to4 tunnel interface. The required
steps for acquiring connectivity with other (6to4) IPv6 hosts are the following:

1. Configure the host 6to4 address for the “Tunnel Pseudo-Interface”, using the colon-
hexadecimal encoding of the IPv4 address of the Ethernet interface. For example, if the IPv4
host address is 195.251.29.19, the 6to4 IPv6 address should be 2002:c3fb:1d13::c3fb:1d13
and the full command is

ipv6 adu 2/2002:c3fb:1d13::c3fb:1d13

Note that the “Tunnel Pseudo-Interface” is used for statically configured tunnels, automatic
tunneling and 6to4 tunnels.

IST-2001-32603
Deliverable D2.3.3-bis1

 72

2. Add the appropriate entry in the routing table through the command that points all the IPv6
packets with 6to4 address to the “Tunnel Pseudo-Interface” by executing the command:

ipv6 rtu 2002::/16 2

3. In order to enable communication to an IPv6 network, a tunnel should be created to a 6to4
relay router. In the following example the command adds an IPv6 default route to a 6to4
relay at 194.177.210.38 through the interface 2:

ipv6 rtu ::/0 2/::194.177.210.38 pub

6.4.5. Linux

6.4.5.1 Manual Configuration using the command “ip”

To not depend on any distribution specific setup scripts one can create a 6to4 tunneling interface by
hand using the command “ip” and tunnel mode “sit” just like with manually configured tunnels.
The only difference here is that there is no need to give any information about remote tunnel
endpoints.

1. Create a new tunnel interface:
/sbin/ip tunnel add <tunnelname> mode sit ttl <default ttl> remote any \

local <local IPv4 address>

 Example:
 # /sbin/ip tunnel add tun6to4 mode sit ttl 0 remote any \

local 128.176.184.7

Note: A TTL must be specified. Otherwise the TTL is inherited (value 0).

2. Bring the new interface up:
/sbin/ip link set dev tun6to4 up

3. Add the local 6to4 address to interface. This is the address computed from the local IPv4
address used in the creation of the tunnel interface (see section 3.2.4). Note that it is
important to use the prefix length 16.
/sbin/ip -6 addr add <local 6to4 address>/16 dev tun6to4

 In this example the line would be:
 # /sbin/ip -6 addr add 2002:80b0:b807::1/16 dev tun6to4

IST-2001-32603
Deliverable D2.3.3-bis1

 73

4. At last only the (default) route has to be configured accordingly. In this case we want to get
the host connected to the rest of the IPv6 internet and thus configure the default route to
point to the “all-6to4-(relay)-routers” IPv4 anycast address:
/sbin/ip -6 route add 2000::/3 via ::192.88.99.1 dev tun6to4 metric 1

6.4.5.2 Using network-scripts with Redhat

Initially, IPv6 functionality should be enabled on the Redhat host (see Appendix B). Furthermore,
in order to set up a 6to4 tunnel, one has to follow the next steps:

5. In the /etc/syconfig/network-scripts/ifcfg-eth0 file include
 “IPV6TO4INIT=yes”

which forces the system to initialize a tunnel (sit1) using the configuration defined in the file
“ifcfg-sit1”.

6. Modify the /etc/sysconfig/ifcfg-sit1 file as follows:
“DEVICE=sit1” Defines the name of the tunnel
“BOOTPROTO=none” Disables the boot protocol
“ONBOOT=yes” Forces the interface to start on boot
“IPV6INIT=yes” Initialising IPv6
“IPV6TUNNELIPV4=x.y.z.w” Set the remote IPv4 address of the
 tunnel
“IPV6ADDR=2002:aabb:ccdd::aabb:ccdd/0” Set local IPv6 address of the

tunnel

The above settings will create a 6to4 tunnel pointing to a 6to4 relay router. In the above
configuration, x.y.z.w is the IPv4 address of a 6to4 relay router and 2002:<IPv4 address as
hex>::<IPv4 address as hex> is the local 6to4 IPv6 address of the host (See section 3.2.4 on
how 6to4 address are created). Note tha t the IPv6 address, e.g. 2002:aabb:ccdd::aabb:ccdd,
is followed by a “/0” suffix in order to force the creation of a default route for all the 6to4
traffic through the sit1 tunnel.

In the file /etc/sysconfig/network include the following line:

 “IPV6_GATEWAYDEV=sit1”

This sets the 6to4 tunnel interface sit1 as the default gateway for all IPv6 traffic.

6.4.6. FreeBSD, NetBSD and Darwin/Mac OS X 6to4 Client

FreeBSD, NetBSD and Darwin/Mac OS X (as well as probably OpenBSD9 use the stf0 (six- to-for)
interface to configure 6to4. Good instructions on how to configure a stf- interface can be found at
the following two weblocations:

http://www.netbsd.org/Documentation/network/ipv6/#typical2

IST-2001-32603
Deliverable D2.3.3-bis1

 74

and

http://onlamp.com/pub/a/onlamp/2001/06/01/ipv6_tutorial.html

6.4.6.1 6to4 with NetBSD’s 6to4-script (Perl)

The easiest way to configure 6to4 on NetBSD (may also work on the other OSes) is to install the
Perl script called “6to4”, that comes with NetBSD itself. The script uses a configuration file called
6to4.conf in which all the needed configuration information is collected and properly commented.
On can install the 6to4-script either manually or from NetBSD’s pkgsrc system where it is found in
/usr/pkgsrc/net/6to4.

6.4.7. BSD with Zebra

In this example the router is configured to advertise the 6to4 anycast prefix 192.88.99.0/24 using
OSPFv2 [RFC3068], and to advertise the 6to4 prefix 2002::/16 [RFC3056] via BGP.

With FreeBSD, the file “/etc/rc.conf” is use for system-level configuration. Here one should add:

ifconfig_xl0_alias0="inet 192.88.99.1 netmask 0xffffff00"
stf_interface_ipv4addr="192.88.99.1"
stf_interface_ipv6_ifid="::"
ipv6_gateway_enable="YES"

The first listed command configures the IPv4 anycast prefix as an alias for the x10 interface. Note
that in real deployments, x10 will have to be replaced by an address corresponding to the used
physical interface with IPv4 connectivity. The second command specifies the address with which
the IPv6 6to4 address for the relay router is created (the bits 16-47 of the IPv6 address). The third
command sets all the site- and interface-id bits to zero. The last command finally enables IPv6
forwarding on the router.

However, the file “rc.conf” can’t be used to configure everything. For that reason some manual
tuning of the file “rc.local” is also needed; the script is run after the processing of rc.conf has
finished.

ifconfig stf0 inet6 2002:c058:6301:: prefixlen 16 anycast

/usr/local/sbin/zebra -d
/usr/local/sbin/bgpd -d
/usr/local/sbin/ospfd -d

/usr/local/bin/vtysh -b

The first command adds an “anycast” flag to the IPv6 6to4 address, so that it is not used as a source
address in outgoing packets. The next three commands start zebra routing processes in the
background. Finally the last command leads to “/usr/local/etc/Zebra.conf” being read and fed to the
respective routing process as a configuration file.

IST-2001-32603
Deliverable D2.3.3-bis1

 75

The relevant parts of the Zebra configuration file /usr/local/etc/Zebra.conf” are:

router bgp 1741
 no bgp default ipv4-unicast
 neighbor 2001:708::2 remote-as 1741
 neighbor 2001:708::2 description 6net-rtr
 neighbor 2001:708:0:1::625 remote-as 1741
 neighbor 2001:708:0:1::625 description v6-rtr
!
 address-family ipv6
 network 2002::/16
 neighbor 2001:708::2 activate
 neighbor 2001:708::2 soft-reconfiguration inbound
 neighbor 2001:708:0:1::625 activate
 neighbor 2001:708:0:1::625 soft-reconfiguration inbound
 exit-address-family
!
router ospf
 ospf router-id 128.214.231.106
 network 128.214.231.104/29 area 3248883125
 network 192.88.99.0/24 area 3248883125
!

Here, the BGP sessions have been configured using AS1741 for two routers in the same
autonomous system. The configuration syntax is similar to one used with Cisco IOS. The main
difference is the Statement “network 2002::/16” under IPv6 address-family, which will originate
a BGP advertisement for the 6to4 prefix.

The Prefix 192.88.99.0/24 is advertised using OSPFv2 under a stub area. The simplest way is to use
area 0 though. IPv4 BGP has been configured to advertise 192.88.99.0/24, but this will not work
unless there exists an IGP route to it. Using static routes would be an option, but in this case the
traffic would be black-holed should the relay router go down. For this purpose, OSPF was chosen
so the BGP advertisements would cease immediately if the OSPF process on the relay router halts
for any reason.

6.5. ISATAP

To use ISATAP within a site, one will need one or more IPv6 hosts supporting ISATAP, and also a
dual stack router supporting it. The following paragraphs on configuration examples cover both host
and router setup on multiple platforms. Different implementations of the mechanism should
interoperate so that host and router platforms can be mixed as needed.
For general security consideration when setting up ISATAP within a site please refer to section
3.2.6.1 in chapter 3. Implementation specific security issues are being addressed in this chapter
where needed.

6.5.1. Cisco IOS Platform (as Router/Server)

The setup of a Cisco router as ISATAP server is pretty much straightforward. All one needs to do is
to define a tunnel interface as follows:

 interface Tunnel0

IST-2001-32603
Deliverable D2.3.3-bis1

 76

 no ip address
no ip redirects

 ipv6 address 2003:abc:def:123::/64 eui-64
 no ipv6 nd suppress-ra
 tunnel source FastEthernet0
 tunnel mode ipv6ip isatap

If an ISATAP supporting client is set up to know about this Cisco router it will be able to
automatically configure its interface with the prefix above. The last 64 bits will be based on the
EUI-64 address and include the IPv4 address of the client as specified in the ISATAP draft
[ISATAP]. According to present experience with ISATAP it does not matter which interface is
specified as the tunnel source as long as it has an IPv4 address reachable by the clients. One can
also specify an address directly.

6.5.2. 6WIND (as router/server)

The following configuration example was tested on a 6WINDgate 6231 running version 6.3.0b12 of
SixOS.

Configuring a 6WIND router to become an ISATAP router is really rather easy and consists mainly
of only two commands, one specifiying the IPv4 address of the tunneling interface the other
defining the prefix to use for the global IPv6 addresses in the ISATAP subnet. This configuration
enables the router to give itself a valid global (ISATAP-style) IPv6 address as well as to send out
router advertisements to possible clients.

For the following example we assume that one has logged on to the router as user “admin” or as a
user with similar permissions.

1. The first step in the configuration is of course to switch to the configuration context for the
configuration file one wants to edit which in the case of this example is the running
configuration. Within the configuration context one has to enter the migration context:

sixwind{} edit running

sixwind{running} mig

2. No follows the actual ISATAP configuration. First one has to configure an “ISATAP
router”, that is a separate routing process for the outgoing IPv4 interface one uses for the
tunneling. It is possible to define several of these processes each with a different number and
possibly different IPv4 addresses.

The theoretic command for this configuration is:

sixwind{running-mig} isatap_router 'number' 'address_v4' ['address_v4']

IST-2001-32603
Deliverable D2.3.3-bis1

 77

As 'number' one specifies the number of the ISATAP process, 'address_v4' is the IPv4
address of the interface the automatic tunnels end on. The optional 'address_v4' feature
is given as either “up” or “down” and defines configured process is switched on or off. If no
state is given the default is “down”.

Later on the state of an ISATAP routing process can also be changed by the command

sixwind{running-mig} isatap_router 'number' 'state'

In our example however we immediately specified the state as “up”:

sixwind{running-mig} isatap_router 1 128.176.191.74 up

3. Next a prefix has to be defined which is announced into the ISATAP subnet. This prefix
should have length 64 and it should be taken care that there is not yet a route defined for this
prefix, e.g. by having configured another interface of the router with an address within this
prefix.

The theoretic command for this configuration step is:

sixwind{running-mig} isatap_prefix 'number' 'address_v6/len'

specifies the ISATAP routing process this prefix corresponds to and thus should be the same
as in the command above. In our example the prefix was configured as follows:

sixwind{running-mig} isatap_prefix 1 3ffe:400:10:110::/64

4. At last after exiting from the migration context the new configuration has to be applied to
the running configuration and one can also add it to the startup configuration to not loose it
during a reboot:

sixwind{running-mig} exit

 sixwind{running} addrunning
 sixwind{running} exit
 sixwind{} copy running start

6.5.3. Windows XP host (as client)

6.5.3.1 Manual Configuration as ISATAP Client

Since Service Pack 1 ISATAP, like all IPv6 functionality, is configured using the “netsh“
command in the command shell. Only the IPv4 address of an ISATAP server is needed to configure

IST-2001-32603
Deliverable D2.3.3-bis1

 78

a Windows XP host as an ISATAP client. (Of course it is required that IPv6 be installed on the host
before using “ipv6 install”). The full command to set up ISATAP after that is:

 c:\ netsh interface ipv6 isatap set router <IPv4 address of ISATAP router>

This is it. With the command “ipconfig /all“ one can verify that the host has indeed received
router advertisements from the server and configured its interface accordingly with an IPv6
ISATAP address. Using the command “tracert“ or typing

 c:\ netsh interface ipv6 show route

further shows, that the default route is now also configured for the ISATAP interface (number 4),
even though 6to4 probably still also is configured.

6.5.3.2 Automatic Configuration as ISATAP Client

When the IPv6 protocol is started (e.g. at boot or installation) and realizes that there is no native
IPv6 connectivity on the link, it tries to resolve the hostname “ISATAP” (on Windows XP without
SP1 “_ISATAP”). If this hostname resolves into an IPv4 address the host will configure itself as an
ISATAP client for this server and set the default route accordingly. Please note that the host will
also configure 6to4 but just as a backup to the ISATAP connection or to communicate with other
6to4 sites.

6.5.4. .NET/Windows 2003 Server (as Client and Router/Server)

Windows 2003 Server can be configured as both ISATAP client and server.

6.5.4.1 Windows 2003 Server as ISATAP Client

Configuring a .NET/2003-server as an ISATAP client works just like with Windows XP either
manually (see section 6.5.3.1) with the command netsh or automatically (see section 6.5.3.2) by
resolving the name "ISATAP". The only difference is that once ISATAP is installed the 6to4
configuration is deleted.

6.5.4.2 Windows 2003 Server as ISATAP Server

For a host running Windows 2003-server to become an ISATAP router it is of course necessary for
the advertised ISATAP prefix to be routed to the server. Additionally the default route of the host
needs to be configured to be published. Otherwise Windows clients will not automatically set their
default route to their ISATAP interface.

To configure the default route to be pub lished the following command is used:

 c:\ netsh interface ipv6 set route ::/0 \\

IST-2001-32603
Deliverable D2.3.3-bis1

 79

"<name or number of default interface>" publish=yes

If the Windows server is a dual stack host integrated in a native IPv6 subnet, the default interface
will most likely be the normal LAN interface (4). Otherwise it might be a configured tunnel or 6to4
interface.

 c:\ netsh interface ipv6 set interface \\

"<interface name or number>" forwarding=enabled

Now the ISATAP interface has to be configured. In order to do so however it first needs to be
enabled. This is achieved by configuring the Windows server as an ISATAP client for itself:

 c:\ netsh interface ipv6 isatap set router <IPv4 address>

The IPv4 address refers to the physical interface used for the tunneling.

The ISATAP interface now also has to be set to forward packets. Additionally it has to be
configured do send out router advertisements:

 c:\ netsh interface ipv6 set interface 2 forwarding=enabled \\

advertise=enabled

At last the route and thus the prefix to be advertised on the ISATAP interface is configured. Like
the default route this route has to be explicitly configured to be published.

 c:\ netsh interface ipv6 add route <ISATAP prefix/64> 2 \\

publish=yes validlifetime=<valid lifetime of route> \\
preferredlifetime=<period for which this route is preferred>

The time periods can be specified in seconds (s), minutes (m), hours (h) or days (d) (e.g 1d2h3m4s).
The default for validlifetime is eternity. If no preferredlifetime is given, the default is the
value for validlifetime.

6.5.5. Linux (as Client and Router/Server)

ISATAP has been included in the Linux kernel by the USAGI project [USAGI]. It can thus be
patched into any present kernel sources and compiled as is described further down. One also needs
the iproute package from USAGI.

6.5.5.1 Patching the Kernel

First one has to download the newest USAGI patch for the kernel one wants to patch, which are
available on USAGI’s pages at

IST-2001-32603
Deliverable D2.3.3-bis1

 80

ftp://ftp.linux.ipv6.org/pub/usagi/

Of course it is best to use stable versions.

Once downloaded and unpacked one can patch the existing kernel sources in /usr/src/linux by
typing:

patch –p1 <usagi-linux2<4,5 or 6>-stable-<snapshot>-<kernel-version>.diff

After the sources have been patched the kernel needs to be configured by typing

 # make xconfig

The section ‘networking options’ contains the new features. Here ‘IPv6: ISATAP interface support
(EXPERIMENTAL)’ needs to be chosen. 1

6.5.5.2 Building USAGI iproute Packages

The USAGI project has its own iproute package. This is included in usagi-tools-* which can also be
found at the above URLs. If not all tools are wanted one can also install iproute individually as an
rpm package from

http://v6web.litech.org/isatap/dist/

The version to be found there is not up to date though.

6.5.5.3 Configuring a Linux Host as an ISATAP Gateway

If a Linux host is used as an ISATAP router this router becomes a kind of access router for an
ISATAP subnet. This subnet has to be provided with a prefix just like any other subnet and this
prefix has to be routed.

During a test setup, the host lemy.uni-muenster.de has been configured as an ISATAP router. At the
same time this host was already a normal access router to another IPv6 subnet with the prefix
2001:638:500:200::/64 and connected to the rest of the IPv6 internet by an IPv6- in-IPv4 tunnel.

For simplicity the /64 prefix was shortened to /63, so 2001:638:500:201::/64 could be used for the
ISATAP subnet.

1 Please note that one has to switch on ‘prompt for development and/or incomplete code/drivers’ in section ‘code
maturity level options’ to be able to switch on any experimental features at all

IST-2001-32603
Deliverable D2.3.3-bis1

 81

After compiling the kernel and rebooting the host the first thing to do is to configure an ISATAP
interface (is0). In the test setup the IPv4 address of the interface where the packets come through
(eth0 on host lemy.uni-muenster.de) was 128.176.184.113. So the interface was configured by
typing:

/sbin/ip tunnel add is0 mode isatap local 128.176.184.113 ttl 64

To enable the interface:

 # /sbin/ip link set is0 up

Now the interface has to be configured with an IPv6 ISATAP address. An ISATAP address
includes the IPv4 address of the host and has the format:

<prefix/64>:0:5efe:<IPv4 address in hex format>

In this case host lemy.uni-muenster.de has the IPv4 IP 128.176.184.113 and is configured with an
address for the prefix 2001:638:500:201::/64. So the ISATAP address for lemy is:

2001:638:500:201:0:5efe:80b0:b871

To add this address to the interface configuration type:

 # /sbin/ip addr add 2001:638:500:201:0:5efe:80b0:bf71/64 dev is0

Now the host has to actually be configured to become a router and send out router advertisements.
Usually ‘radvd’ is used for router advertisements. It can be found at

http://v6web.litech.org/radvd/

In this case the configuration file for radvd (usually /etc/radvd.conf) has the following entries:

 interface is0

 {

 AdvSendAdvert on;

 UnicastOnly on;

 AdvHomeAgentFlag off;

 prefix 2001:638:500:201::0/64

 {

IST-2001-32603
Deliverable D2.3.3-bis1

 82

 AdvOnLink on;

 AdvAutonomous on;

 AdvRouterAddr off;

 };

 };

Now the router configuration is done. To have this setup come up at boot one can best add the
“/sbin/ip”- lines from above to /etc/rc.local.

6.5.5.4 Configuring a Linux Host as an ISATAP client

Configuring a Linux host as an ISATAP client is rather easy. One really only has to know the IPv4
address of the host acting as the ISATAP gateway (in this case lemy.uni-muenster.de =
128.176.184.113) and the IPv4 address of the client in question (here 128.176.245.58). With this
information configuration is performed by two commands:

 # /sbin/ip tunnel add is0 mode isatap local 128.176.245.58 v4any \

 128.176.184.113 ttl 64

 # /sbin/ip link set is0 up

Now the client should be connected to the rest of the IPv6 world, as long as the ISATAP server has
global IPv6 connectivity.

6.6. OpenVPN Tunnel Broker

This following sections describe the process of setting up an OpenVPN based IPv6 tunnel broker to
enable ISP-independent IPv6 connectivity that is authenticated, secure, stable, and IPv4 source-
address independent. It provides an insight into necessary configurations, gives an overview over
administrative tasks and possible caveats.

Important notice for Client users: This first parts of this section focueses on the construction of a
whole tunnel broker. For instructions on how to install the client software, please read section 6.6.9
below.

IST-2001-32603
Deliverable D2.3.3-bis1

 83

6.6.1. Definition of the term "tunnel broker"

There are many different definitions of the term "tunnel broker". To clarify what this term means in
the context of this paragraph, it is necessary to summarise the tasks that the OpenVPN-based tunnel
broker should fulfil:

• provide IPv6 connectivity to a subscribed client

• manage a set of X.509 certificates and keys and a certification authority (CA)

• check authorisation of a client

• assign a fixed IPv6 prefix to each client (either /64 or /128 for a single address)

• adjust routing according to prefix-/address-assignment

• on subscription of a new client, create client configuration for server and as archive file for
client

• handle subscription information

To handle all of the above tasks, the tunnel broker needs to consist at least of the following
components:

• OpenVPN server(s)

• OpenSSL certification authority (CA)

IST-2001-32603
Deliverable D2.3.3-bis1

 84

• client database

• dedicated router for clients (is identical to OpenVPN server)

• IPv6 infrastructure to route IPv6 traffic to and from clients

To visualise the interaction of these components, take a look at the following figure.

Figure 6-1 Interaction of tunnel broker components

The components in detail may look like this:

• OpenVPN server: powerful Linux or *BSD PC with latest OpenVPN software (at the time
of writing of this document, this is a version that is more recent than 1.6_rc2); JOIN utilise a
Linux server for their installation

• OpenSSL CA: may be any kind of machine with an OpenSSL installation which provides
the openssl-binary to create X.509 keys and certificates

• Client database: almost any form of database for holding information about clients ranging
from simple text file to dedicated database systems

• Dedicated IPv6 router: normally the same Linux or *BSD machine that runs the OpenVPN
server; routes need to be adjusted on that particular machine

• IPv6 infrastructure: your institution's IPv6 backbone

IST-2001-32603
Deliverable D2.3.3-bis1

 85

The above components form what we call a "tunnel broker" for the remainder of this section. It is
clear that for the sake of scalability, many of the services (e.g. the OpenVPN server) may be spread
across numerous different servers. This is not difficult to achieve and can easily be implemented.

6.6.2. Tunnel Broker Clients

A very important part of a tunnel broker are -- obviously -- the tunnel broker clients. To understand
what functionality a tunnel broker needs to implement, it is necessary to have a look at the different
types of clients that need to be connected to the tunnel broker.

First of all, one needs to identify the network topology that a potential client will most likely reside
in. It is assumed that any tunnel broker client only has native global IPv4 connectivity and no global
IPv6 connectivity. From a practical viewpoint, having global IPv6 connectivity additionally to the
tunnel broker IPv6 connectivity is possible. However, this scenario is not a standard scenario where
an IPv6 tunnel broker would be employed. Additionally, effects that are imposed by having two
types of global connectivity still need to be investigated. No serious problems are to be expected but
tests have not yet been conducted to verify this.

One differentiates between two types of clients that reside in two different network topologies for
this particular OpenVPN IPv6 tunnel broker:

• Hermit client: a lone client that will be assigned a /128 address

• Subnet client: a client that will be assigned a /64 prefix and that may act as a router for a
subnet where it may announce this /64 prefix to other hosts that use the client as their default
router

Figure 6-2 Types of tunnel broker clients

IST-2001-32603
Deliverable D2.3.3-bis1

 86

Though the OpenVPN client runs on many different platforms and hence a tunnel broker that is
based on OpenVPN should be able to accommodate quite a large number of different client OS',
this document will only deal with Linux and Windows clients for now, since those are the client OS'
that haven been tested as tunnel broker clients so far. However, extending the support to other client
OS' should be trivial.

6.6.3. Installation of Tunnel Broker components

To set up an OpenSSL certification authority it is sufficient to install the OpenSSL package on your
Linux distribution (check that the openssl-binary is present and executable as root). The more
difficult step is to create an appropriate configuration file and to create the necessary CA certificates
and keys. This document will present a sample openssl.cnf configuration file that is self-explanatory
and that may be edited to fit individual needs. It will also list the necessary steps to create all CA
keys and certificates.

6.6.3.1 Installation of OpenSSL CA

To set up an OpenSSL certification authority it is sufficient to install the OpenSSL package on your
Linux distribution (check that the openssl-binary is present and executable as root). The more
difficult step is to create an appropriate configuration file and to create the necessary CA certificates
and keys. This document will present a sample openssl.cnf configuration file that is self-explanatory
and that may be edited to fit individual needs. It will also list the necessary steps to create all CA
keys and certificates.

Creating an openssl.cnf

The following listing shows the openssl.cnf that JOIN uses for its OpenSSL CA:

OpenSSL example configuration file.

HOME = .

RANDFILE = $ENV::HOME/.rnd

oid_section = new_oids

[new_oids]

[ca]

default_ca = CA_default

[CA_default]

dir = /usr/local/etc/openvpn/ssl # Adjust this!

certs = $dir

IST-2001-32603
Deliverable D2.3.3-bis1

 87

crl_dir = $dir

database = $dir/index.txt

new_certs_dir = $dir

certificate = $dir/tmp-ca.crt # Adjust this!

serial = $dir/serial

crl = $dir/crl.pem

private_key = $dir/tmp-ca.key # Adjust this!

RANDFILE = $dir/.rand

x509_extensions = usr_cert

name_opt = ca_default

cert_opt = ca_default

default_days = 365 # Adjust this!

default_crl_days= 30

default_md = md5

preserve = no

policy = policy_match

[policy_match]

countryName = match

stateOrProvinceName = match

organizationName = match

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

[policy_anything]

countryName = optional

stateOrProvinceName = optional

localityName = optional

organizationName = optional

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

[req]

default_bits = 1024

IST-2001-32603
Deliverable D2.3.3-bis1

 88

default_keyfile = privkey.pem

distinguished_name = req_distinguished_name

attributes = req_attributes

x509_extensions = v3_ca

string_mask = nombstr

[req_distinguished_name]

countryName = Country Name (2 letter code)

countryName_default = DE # Adjust this!

countryName_min = 2

countryName_max = 2

stateOrProvinceName = State or Province Name (full name)

stateOrProvinceName_default = Nordrhein-Westfalen # Adjust this!

localityName = Locality Name (eg, city)

localityName_default = Muenster # Adjust this!

0.organizationName = Organization Name (eg, company)

0.organizationName_default = ZIV, WWU Muenster # Adjust this!

organizationalUnitName = Organizational Unit Name (eg, section)

organizationalUnitName_default = JOIN-Projekt # Adjust this!

commonName = Common Name (eg, YOUR name)

commonName_max = 64

emailAddress = Email Address

emailAddress_max = 64

[req_attributes]

challengePassword = A challenge password

challengePassword_min = 4

challengePassword_max = 20

unstructuredName = An optional company name

[usr_cert]

basicConstraints=CA:FALSE

IST-2001-32603
Deliverable D2.3.3-bis1

 89

nsComment = "OpenSSL Generated Certificate"

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid,issuer:always

[v3_req]

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

[v3_ca]

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid:always,issuer:always

basicConstraints = CA:true

[crl_ext]

authorityKeyIdentifier=keyid:always,issuer:always

Please note that you need to include "-config openssl.cnf" (where openssl.cnf is to be given
with full path if not located in current directory) in every call of the openssl-binary. If you use the
management scripts provided by JOIN, you need to adjust the variable pointing to your OpenSSL-
installation.

Attention: You must initialise the files index.txt and serial when setting up the CA. You can
create index.txt as an empty file and serial with the content "01". Additionally, you need a
DH-hash that you can create with the command

openssl dhparam -out /usr/local/etc/openvpn/ssl/dh1024.pem 1024.

You can use the script setup-ca.sh from the JOIN configuration script package to do this
task.

Creating keys and certificates for your CA

Important: This document shows a rather lax use of a CA. Ideally, you should take the process of
running a CA rather seriously, especially if you want to hold people liable for the abuse of your
tunnel broker. If you already have an established CA, please try to use it for creating client and
server certificates. This will add to the security of your tunnel broker. Please use "your own private
little CA" just for experimental purposes or if you think that you can afford to keep the security
rather lax.

To create your own CA keys and certificates, run the following command:

openssl req -days 365 -new -x509 -keyout tmp-ca.key \

-out tmp-ca.crt -config openssl.cnf

IST-2001-32603
Deliverable D2.3.3-bis1

 90

This command will create the secret key called "tmp-ca.key" and the certificate "tmp-ca.crt".
Please note that the notation "tmp-ca.*" is intentional to make administrators aware that they are
dealing with an experimental or temporary CA. Please make sure that the permissions for the secret
key do not allow it to be read by any other user than the one who created it ("chmod 600 tmp-
ca.key").

With these basic steps the setup of the OpenSSL CA is completed.

6.6.3.2 Installation of OpenVPN server

At the time this document was written, a very recent CVS-version of the OpenVPN software was
needed to have all functionality that was necessary for running the OpenVPN based IPv6 tunnel
broker. The OpenVPN software can be found at

http://openvpn.sourceforge.net/

Please follow the installation instructions for the CVS version on the OpenVPN site. The
installation is not expected to pose any problems.

It is assumed that the OpenVPN sources are compiled with the given installation prefix /usr/local
which means that the configuration files can be found in /usr/local/etc/openvpn. Naturally, any
other prefix works just as well but for the sake of readability, the /usr/local prefix will be used for
the remainder of the documentation.

6.6.3.3 Installation of user database

The installation of a user database is completely optional. The more users need to be accommodated
by the tunnel broker, the more sophisticated the user database should be. For testing purposes, a
simple text file may suffice.

If you plan to use the administration scripts provided by JOIN, please be aware that the user
management is not yet implemented and you might want to integrate the user management part
yourself.

Since there are significant differences between each local user database requirement, this document
will not deal with the setup of the database in detail.

6.6.4. Functionality of tunnel broker and its components

All components of the tunnel broker serve a particular purpose. To explain the concept behind the
tunnel broker, it is necessary to understand why a certain component is needed and what it actually
does. This paragraph deals with each component separately and it will later explain how all the
components work together and it will explain, what a typical connection by a client looks like from
the client's and the server's point of view.

IST-2001-32603
Deliverable D2.3.3-bis1

 91

6.6.4.1 OpenSSL CA

For many tunnel brokers, having some form of access control and authorisation is mandatory. It was
one of the prerequisites for JOIN when working on the OpenVPN based tunnel broker. OpenVPN
offers a very flexible and secure way of autho rising access using X.509 certificates and keys.
OpenVPN uses functionality provided by the OpenSSL library (e.g. TLS key exchange). The
OpenSSL CA is needed to sign certificates for clients that would like to connect to the tunnel
broker.

When a new client subscribes to the tunnel broker service, the following things have to be done:

1. Create an X.509 key and certificate for the client.

2. CA verifies the identity and authorisation of the client to actually use the tunnel broker and
then signs the certificate of the client.

3. The CA's certificate is given to both the client and the server. It is used to verify the
signature of the X.509 certificates of both client and server when they execute a TLS key
exchange.

The CA is the trusted intermediary instance that both the server and the client trust.

When a client starts an OpenVPN-connection to the server, the following steps are exercised by
client and server:

1. TLS handshake and key exchange is started.

2. Both server and client verify the Common Names of each other's public certificates. Only on
a positive verification of the CN the server or client continue the negotiations. (The CN
verification can be seen as an initial sanity check.)

3. After the CN verification, the key exchange is started. Server and client verify each other's
keys using the CA's certificate to find out if the signatures of the certificates are valid. If yes,
both client and server proceed.

4. The server uses the client's certificate to cipher the stream that is sent to the client and it uses
OpenSSL functionality to multiplex the tunnel into a UDP/IPv4 stream. The client uses his
private key to decrypt the ciphered stream after de-multiplexing it. The client's use of the
server's certificate is analogue.

This summarises where the OpenSSL CA and the X.509 certificates and keys created by the CA
play a key role.

Note: JOIN's OpenVPN based tunnel broker used encrypted tunnel streams in an initial version.
However, now it uses the "null" cipher instead of the blowfish block stream cipher. This solves
some performance and overhead issues.

IST-2001-32603
Deliverable D2.3.3-bis1

 92

6.6.4.2 OpenVPN server

The OpenVPN server is the actual heart of the tunnel broker. OpenSSL CA and user database are
merely the framework or better say the helper applications that enable a controlled use of OpenVPN
for a tunnel broker. This document will not go into deep technical detail. Rather, the most important
functions of OpenVPN shall be described here.

The most important function of OpenVPN is obviously to provide some form of tunnel for IPv6
over UDP/IPv4. To understand what OpenVPN does to tunnel, one can have a look at what happens
when client connects to an OpenVPN server:

1. Server verifies the identity of the client.

2. OpenVPN creates either a tun interface (P-t-P) or a tap interface (ethernet bridge) on both
ends.

3. The tunnel interfaces are configured with IPv6 addresses.

4. The routing on the OpenVPN server is adjusted to route a pre-defined IPv6 prefix to the client
via the tunnel interface. The client in turn adjusts its IPv6 default route to use the tunnel
interface.

Please note that for subnet clients, a special routing prefix is used to route IPv6 traffic. The reason
for this is to not use up any IPv6 addresses from the assigned /64 prefix. Hence, the full assigned
/64 prefix is at the client's disposal for local address assignment.

The OpenVPN server and client call external scripts upon establishing a new connection. These
scripts are:

• a TLS verification script (used for checking CNs of X.509 certificates)

• an "up" script that calls external programs to configure interfaces and to set up routes or
starting certain programs after setting up the tunnel

• a "down" script that may be used to cleanly dispose of the tunnel (end programs etc.)

6.6.5. Routing configuration

An important task when setting up and maintaining a tunnel broker is the organisation of the
routing. Not only does one have to set up routes to the OpenVPN server which itself has to act as a
router, one also needs to dynamically add routes upon a client connection and remove them
afterwards. The routing itself is not very complicated but there are a few things that need to be
taken into account when planning the routing. Here are a few prerequisites that need to be met for
JOIN's tunnel broker:

• A /56 prefix is at the tunnel broker's disposal to assign addresses for clients (either single
IPv6 addresses or complete prefixes).

• Subnet clients must be able to freely assign addresses from the /64 prefix they get assigned.

IST-2001-32603
Deliverable D2.3.3-bis1

 93

• All clients must be identifiable by their respective addresses (hermit clients) or prefixes
(subnet clients).

JOIN came up with a concept that would meet all of the above prerequisites. The concept has the
following form:

• The prefix used for JOIN's tunnel broker is 2001:638:500:f100::/56.

• All hermit hosts receive a /128 address coming from the prefix 2001:638:500:f1ff::/64.

• All subnet hosts receive /64 prefixes ranging from 2001:638:500:f101::/64 to
2001:638:500:f1fe::/64.

• The prefix 2001:638:500:f100::/64 is solely used for routing purposes for subnet hosts.
Example: for a subnet client that is provided with the prefix 2001:638:500:f1ab::/64, the
routing address 2001:638:500:f100::f1ab:1/112 is used for the P-t-P interface on the
OpenVPN server's side, the address 2001:638:500:f100::f1ab:2/112 is used on the
OpenVPN client's side. This way routes can be assigned uses those routing addresses as
Next-Hop. No addresses from 2001:638:500:f1ab::/64 are used and hence the client can
freely assign addresses from this prefix locally.

• All clients are assigned the same addresses or prefixes every time they connect. There is a
1:1 mapping between address/prefix and X.509 certificate. This helps to identify tunnel
broker clients by they IPv6 addresses.

The following figure depicts a sample address assignment and routing configuration for a subnet
client.

To show how the routing is arranged for several subnet clients, please see the following figure.

IST-2001-32603
Deliverable D2.3.3-bis1

 94

The hermit client case is trivial: the server's local interface gets a fe80::1/64 IP address to have a
next-hop address for the client on the other side. A route to the /128 IPv6 address of the client is
added via the corresponding tunnel interface.

6.6.6. Sample server configuration

To give the reader an idea what a typical server configuration may look like, this chapter will
present a number of sample configuration files.

The server needs three mandatory configuration files per client (note: each client has his own server
instance with its own configuration; also, each server occupies exactly one UDP port):

• basic configuration file

• TLS verification script

• "up" script to initialise tunnel interface and routing

A sample configuration file looks like this:

IST-2001-32603
Deliverable D2.3.3-bis1

 95

daemon server-christian.strauf
dev tun

tun-ipv6

up /usr/local/etc/openvpn/server-conf/christian.strauf.up

tls-server

log-append /usr/local/etc/openvpn/server-logs/christian.strauf.log

dh /usr/local/etc/openvpn/ssl/dh1024.pem

ca /usr/local/etc/openvpn/ssl/tmp-ca.crt

cert /usr/local/etc/openvpn/ssl/servers/christian.strauf.crt

key /usr/local/etc/openvpn/ssl/servers/christian.strauf.key

tls-verify /usr/local/etc/openvpn/server-conf/christian.strauf.tls-verify

port 5000

persist-tun

ping 15

ping-restart 45

ping-timer-rem

persist-key

verb 3

The first part of the configuration file configures the OpenVPN server itself (act as a daemon, use a
tun P-t-P interface and optimise multiplexing for IPv6 tunnelling). The second part tells the server
where to find the "up" script and the server should authorise connection via TLS. The third part
defines where to write log messages. The fourth part tells the server where to find the Diffie
Hellmann hash, the CA certificates, the client's public key, the server's private key and the TLS
verification script that check's the client certificate's Common Name. The fifth part tells the server
which UDP port to use. The sixth part is very important to guarantee the OpenVPN tunnel's stability
when used on dial-up links. It tells the tunnel to try to be as persistent as possible by checking the
status of the tunnel with regular pings and other techniques. These options also suffice in many
cases to help a client to traverse a NAT gateway because the gateway might be able to recognise
that there is constant traffic coming in over the same port. The seventh and last part sets the
verbosity level of the log messages.

Another important configuration file is the "up" script that is run by the OpenVPN software after
the tunnel has been established. The "up" script configures the local tunnel interface and handles the
route setup.

IST-2001-32603
Deliverable D2.3.3-bis1

 96

#!/bin/bash

INTERFACE=$1; shift;

TUN_MTU=$1; shift;

UDP_MTU=$1; shift;

LOCAL_IP=$1; shift;

REMOTE_IP=$1; shift;

MODUS=$1; shift;

ip link set ${INTERFACE} up

ip link set mtu ${TUN_MTU} dev ${INTERFACE}

ip -6 addr add 2001:638:500:f100::f101:1/112 dev ${INTERFACE}

ip -6 addr add fe80::f101:1/64 dev ${INTERFACE}

ip -6 route add 2001:638:500:f101::/64 dev ${INTERFACE}

exit 0

The content of the "up" script should be self-explanatory.

6.6.7. Sample subnet client configuration

This paragraph will present a sample subnet client configuration. Since a hermit client's
configuration is almost the same, it is easy to deduct the configuration for it from this subnet client's
sample configuration.

The basic configuration file of the client that corresponds to the server in the above paragraph looks
like the following:

daemon client-christian.strauf

dev tun

tun-ipv6

remote corello.uni-muenster.de

up /etc/openvpn/christian.strauf.up

tls-client

ca /etc/openvpn/tmp-ca.crt

cert /etc/openvpn/christian.strauf.crt

key /etc/openvpn/christian.strauf.key

IST-2001-32603
Deliverable D2.3.3-bis1

 97

tls-verify /etc/openvpn/tls-verify

port 5000

persist-tun

ping 15

ping-restart 45

ping-timer-rem

persist-key

verb 3

The configuration is analog to the server configuration. The only differences are that a remote
server is defined that the OpenVPN client tries to connect to and that no DH hash is used. If you use
JOIN's management scripts, all configuration files have to be placed in /etc/openvpn.

The "up" script of a subnet client also sets up the tunnel interface and it creates a default route via
the tunnel interface. Additionally, it enables IPv6 packet forwarding and it adds a route for the /64
prefix that is assigned to the client via an internal interface (in most cases eth0):

#!/bin/bash

INTERFACE=$1; shift;

TUN_MTU=$1; shift;

UDP_MTU=$1; shift;

LOCAL_IP=$1; shift;

REMOTE_IP=$1; shift;

MODUS=$1; shift;

ip link set ${INTERFACE} up

ip link set mtu ${TUN_MTU} dev ${INTERFACE}

ip -6 addr add 2001:638:500:f100::f101:2/112 dev ${INTERFACE}

ip -6 addr add fe80::f101:2/64 dev ${INTERFACE}

ip -6 route add default dev ${INTERFACE} metric 1

sysctl -w net.ipv6.conf.all.forwarding=1

ip -6 addr show dev eth0 | grep 2001:638:500:f101::1/64 \

IST-2001-32603
Deliverable D2.3.3-bis1

 98

 >/dev/null 2>&1 || ip -6 addr \

 add 2001:638:500:f101::1/64 dev eth0

6.6.8. Management

The management of the tunnel broker is rather complicated to handle manually. Therefore, JOIN
team members have written a very basic bash script that handles certificate creation, certificate
signatures, server- & client-configurations and the creation of an archive file that may be given to
users to set up the OpenVPN client on their machines. However, the script as of now can only be
used to create client accounts, it cannot remove accounts and it does not handle the storage of client
information in a user database. Therefore, the script should only be used as a reference for tunnel
broker administrator how to set up local management. The script is released under the GNU GPL
and may be modified to fit individual needs.

create-client-conf.sh is a script that is used to...

• ... create a client ID (e.g. christian.strauf),

• ... create an X.509 key and certificate for the client,

• ... sign the certificate using the CA's key,

• ... read routing relevant information from commandline (hermite or subnet client, Linux or
Windows host, prefix to use),

• ... create the server's configuration files and scripts,

• ... put all client relevant configuration files into an archive that is given to the user.

To facilitate debugging of the tunnel on the client's side, join-openvpn-sanity-check.sh can be run
on a Linux subnet client. The script collects a number of different information and tries to analyse if
the information makes sense. It tests the setup for potential errors and reports these errors back to
the user. The script does not modify the system, it is "read-only". It also does not send information
somewhere, it merely displays information on the console that can be used by the user to identify
the source of a problem.

IST-2001-32603
Deliverable D2.3.3-bis1

 99

IST-2001-32603
Deliverable D2.3.3-bis1

 100

Both scripts may be freely downloaded and distributed under the terms of the GNU GPL, however
it is important to note that the scripts should only be used as a reference for a local installation
rather than as a full featured "all- in-one" package.

Note: Please make sure to read the README and INSTALL files that are included in the tarball
because they contain important setup information for the scripts.

6.6.9. Client user guide

The installation of the OpenVPN based IPv6 tunnel broker client consists of three different steps:

1. Subscription to the service and receiving of configuration files from tunnel broker.

2. Installation of the OpenVPN client.

3. Installation of the OpenVPN configuration files provided by the tunnel broker.

The subscription part is the non-technical part. The technical part starts with the installation of the
OpenVPN client. The client should be newer than version 1.6_rc3. It can be downloaded at
http://openvpn.sourceforge.net/. Please install the package according to the documentation that can
be found on the OpenVPN homepage (quick guide: under Windows, simply double-click the EXE
file; under Linux, make sure that you have tun-driver- and IPv6-support in your kernel and that you
have OpenSSL-devel and LZO-devel packages installed and do a "./configure ; make ; make install"
-- for details, please refer to OpenVPN's documentation).

The configuration files that are provided by the tunnel broker must be copied to either /etc/openvpn
(Linux) or to the config subdirectory of your OpenVPN installation (Windows). Starting the client
is trivial:

• openvpn --config /etc/openvpn/<your.ID>.conf (Linux)

• run OpenVPN either as a service or from cmd.exe (Windows)

IST-2001-32603
Deliverable D2.3.3-bis1

 101

6.7. DSTM

6.7.1. A DSTM Experiment with FreeBSD 4.5

6.7.1.1 The test network topology

IPv6 access router

IPv6

2001:660:10a:4002::/64

193.49.160.0/24

IPv4

IPv4 access routerDSTM server/gateway
193.49.160.84 + IPv6

DSTM client

2001:660:10a:8002::/64

IPv6 only network

Figure 6-1: Test Network Infrastructure

The DSTM server/TEP implementation by ENST [ENST] is available on the ENST’s web site:

http://www.ipv6.rennes.enst-bretagne.fr/dstm/

The implementation requires that the server and gateway (TEP) be installed on the same host if the
allocations made by the server should be coherent with the tunnels set up on the TEP. An external
TEP (For example a 6Wind router with DSTM code) can also be used (But, this scenario has not
been tested). In that case the TEP manages the tunnels directly and does not interact with the server,
which then only is responsible for distributing the leases of IPv4 addresses. It must only be insured
that the leases expire/renew durations are coherent with respect to the TEP configuration. In this
configuration example however the TEP and the server are the same program. Thus the
tunnel extremities are on the machine running the server and there is no way to use two different
Linux/FreeBSD nodes separating the server from the TEP.

When installing DSTM one has to be aware of the fact that the TEP has to be the router declared as
having access to the IPv4 address pool from the IPv4 world, and that the DSTM server program
does not manage route advertisements. Therefore, on the server site, one must provide by some way
routes and route advertisements for the IPv4 addresses of DSTM clients toward the TEP node. For
example on the site entry router, one can set a route for the remote IPv4 address pool allocated to
DSTM clients toward the TEP IPv4 address, and make sure that this IPv4 route is announced or
aggregated. Also there are routing loops between the TEP and the site IPv4 default router thus, on
the TEP node, one should set a static discard route to suppress all traffic to down clients.

IST-2001-32603
Deliverable D2.3.3-bis1

 102

The DSTM implementation uses RPCv6, TSP and TSP–SSL (For VPN scenario) for the
communication between DSTM Server/TEP and DSTM clients. Until now, the current
implementation has no support for DHCPv6

6.7.1.2 DSTM Installation

To Install DSTM, one needs to perform the system installation which includes the application of an
RPC patch from the ENST website and then commencing with the installation of DSTM system
modules. To install DSTM system modules the source code should be unpacked and after going to
dstmd directory, the ‘make system’ and ‘make systeminstall’ commands should be executed to
compile the system modules.

Note that the website mentioned above explains the installation procedure in more detail.

After system installation one needs to configure the DSTM server/TEP and the DSTM clients as
follows:

6.7.1.3 Configuration of the DSTM server/TEP

In this example the following lines where the output from the command “ifconfig” before starting
on the configuration of the DSTM server:

xl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

 inet 193.49.160.84 netmask 0xffffff00 broadcast 255.255.255.0

 inet6 fe80::260:8ff:fe59:6623%xl0 prefixlen 64 scopeid 0x1

 inet6 2001:660:10a:4002:260:8ff:fe59:6623 prefixlen 64 autoconf

 ether 00:60:08:59:66:23

 media: Ethernet 10baseT/UTP (10baseT/UTP <half-duplex>)

gif0: flags=8050<POINTOPOINT,RUNNING,MULTICAST> mtu 1280

 inet6 fe80::260:8ff:fe59:6623%gif0 prefixlen 64 scopeid 0x7

The following lines should be added to /etc/rc.local:

ifconfig gif0 create
ifconfig gif1 create
ifconfig gif2 create
ifconfig gif3 create

sysctl -w net.inet.ip.forwarding=1 # enables IPv4 routing

route add -net 195.98.237.144/28 193.49.160.126 –reject

The following lines should be added to /etc/rc.conf:

hostname="DSTM-server.renater.fr" # Name of the workstation

Cancels default route for

195.98.237.144/28 network

This command is mandatory

creates 4 tunnels

IST-2001-32603
Deliverable D2.3.3-bis1

 103

ifconfig_xl0="inet 193.49.160.84 255.255.255.0" # IP configuration
ipv6_enable="YES" # Enables IPv6
portmap_enable="YES" # Enables portmap (used by DSTM)
portmap_program="/usr/sbin/rpcbind" # Portmap program
defaultrouter="193.49.160.126" # Default gateway

In /usr/local/etc/rpcdstmd.conf one should add:

subnet 195.98.237.144 netmask 255.255.255.224 { # IPv4 address pool used
 default-lease-time 1200;
 tep6 2001:660:10a:4002:260:8ff:fe59:6623; # IPv6 address of the
 # TEP (itself here)
 tep4 193.49.160.84; # IPv4 address of the TEP (itself here)
 range 195.98.237.146 195.98.237.158; # Part of the pool used for allocations
}

To launch the server one has to execute:

touch /var/db/rpcdstmd.lease
/usr/src/sbin/dstmd/server/rpcdstmd –notsp –rpcport 6000

6.7.1.4 Configuration of the DSTM client

Output from command “ifconfig”:

xl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

 options=3<rxcsum,txcsum>

 inet6 fe80::2c0:4fff:fe83:22c4%xl0 prefixlen 64 scopeid 0x1

 inet6 2001:660:10a:8002:2c0:4fff:fe83:22c4 prefixlen 64 autoconf

 ether 00:c0:4f:83:22:c4

 media: Ethernet autoselect (100baseTX <full-duplex>) status:
active

The following lines should be added to the file /etc/rc.config on the client host.

hostname="DSTM-client.renater.fr"
ipv6_enable="YES"

Lines to add to /etc/rc.local:

ifconfig gif1 create # creates one tunnel interface

sysctl -w net.inet.ip.dti_magic=10 # sets up the DTI timer (time the kernel sleeps
 # waiting dstmd daemon to do something)

IST-2001-32603
Deliverable D2.3.3-bis1

 104

To launch the daemon type:

dstmd -rpcserver <DSTM-server> –port 6000

It is necessary to specify the name or the address of the DSTM server and sometimes the port.

6.7.1.5 Tests results and Issues

When installation and configuration is accomplished, it is possible for every DSTM client to
communicate with IPv4 hosts using IPv4 enabled applications.

The performance testing of DSTM was done over a Very High Speed Network (1 Gbps) and
comparison was made between normal IPv4 communication and DSTM IPv4 communication over
the network. When DSTM performance was measured after measuring IPv4 performance, then it
was found that RTT (Round Trip Time) decreased just about 2 percent and throughput decreased
just around 7 percent if the payload size was kept below 1212 bytes (limit after which fragmentation
starts with DSTM configurations). If the payload size was bigger, throughput decreased a bit more
due to the increase of load with the DSTM mechanism.

There are also some other issues:

§ Some times in older kernel versions the make script in the dstmd/bsd folder works only after a

slight and minor modification.
§ One has to rebuild the full kernel after making the RPCv6 patch and if one uses the patch, then

it is also very sensitive to system version.
§ RPCv6 mechanism cannot cross firewall and cannot be used for VPN scenario.
§ With KAME, the correct number of gif (interfaces) must be put in the system configuration file

(no dynamic gif).
§ All IPv4 communication must be initiated by the DSTM client, because the DSTM client is the

one that requests the tunnel to be set up (Although there exists an implementation that was not
tested yet making it possible for remote IPv4-only hosts to initiate a communication with a
DSTM client in an IPv6-only network).

6.7.2. DSTM usint TSP-SSL (in a VPN scenario) on FreeBSD

6.7.2.1 Installation and Setup

Please refer to the previous section 0 about how to install DSTM on a FreeBSD host.

In order to use SSL with TSP, some certificates are needed:

1) Certificates with authority to sign other certificates (CA).

2) Certificates (cert) and corresponding private keys, signed by some known CA.

IST-2001-32603
Deliverable D2.3.3-bis1

 105

For both server and client the following files and certificates are needed:

1) local cert: A file containing a certificate for the local machine and the corresponding private key.
In the following example configuration this file will be /etc/dstmd/cert.pem. The certificate is
signed by some CA. This CA must be known by any correspondent (the other side of a TSP
connection) in its CA file (see below).

Both the certificate and key are in PEM format, the certificate is the first data in the file.

The file contains:
 Comments
 -----BEGIN CERTIFICATE-----

 certificate

 -----END CERTIFICATE-----

 Comments

 -----BEGIN RSA PRIVATE KEY-----

 Private key

 -----END RSA PRIVATE KEY-----

The certificate’s key may be protected (crypted) with a password/pass phrase. If the certificate’s
key is not encrypted, some measures should be taken to protect the file /etc/dstmd/cert.pem as a
whole, i.e:

chown root /etc/dstmd/cert.pem; chmod 400 /etc/dstmd/cert.pem

2) password file: If the certificate’s key is encrypted, put the pass phrase needed to decode it in
some other file (in clear text), e.g. /etc/dstmd/pass and protect it:

chown root /etc/dstmd/pass; chmod 400 /etc/dstmd/pass

3) CA: A file containing all CAs used for signing certificates of correspondents, and also the CA
signing the CA of this file (if there is a chain of certification), concatenated in some file, e.g.
 cat .../*CA*pem > /etc/dstmd/cacert.pem

 Each CA is in PEM format, the file contains:
 Comments
 -----BEGIN CERTIFICATE-----

 First CA

 -----END CERTIFICATE-----

 Comments

 -----BEGIN CERTIFICATE-----

IST-2001-32603
Deliverable D2.3.3-bis1

 106

 second CA

 -----END CERTIFICATE-----

 ...

4) Accepted cert list: If you want to restrict access to only some certificates.

One local cert is needed for the server and one for each client, but they may be the same - if the
security risk of sharing is accepted. Note: cert key may protected by a password; if you use a
password, it must be passed (clear text) to dstmd/rpcdstmd in a file (protected! use chmod 400). If
you do not use a password, the key/cert file should be protected (chmod 400).

To obtain a certificate, either use a certificate issued by some authority (it seems that standard
certificates are sufficient, no special "role" is needed), or use the easiest way and create one using
the program openssl as described in the ‘How to create CA and certs, using openssl’ section of the
README-SSL file provided with the SSL version of DSTM available on ENST’s website.

6.7.2.2 Configuration of the DSTM Server/TEP

The DSTM server/TEP is configured exactly as described above (when using RPCv6). The
difference when using TSP only arises when starting the server, for which one needs to execute the
following command:

#rpcdstmd –tspport 7000

For using SSL with TSP start rpcdstmd with the following additional options:

 -key /etc/dstmd/cert.pem -ca /etc/dstmd/cacert.pem

If the files exist and should be used also specify the following options:

-pass /etc/dstmd/
-cert /etc/dstmd/accepted.pem

6.7.2.3 Configuration of the DSTM Client (with TSP)

Again the only difference to using DSTM with RPC is the command to start the daemon:

 #dstmd -tspserver 2001:688:1f9b:1003:207:e9ff:fe11:bfb8 -port
7000

When also using SSL of course also the necessary certificate options need to be specified:

IST-2001-32603
Deliverable D2.3.3-bis1

 107

-key /etc/dstmd/cert.pem -ca /etc/dstmd/cacert.pem

-pass /etc/dstmd/pass (if /etc/dstmd/pass exists)

-cert /etc/dstmd/accepted.pem (if /etc/dstmd/accepted.pem exists)

6.7.2.4 Testing Results and Issues

Installation was easy as an RPC patch was not needed and moreover DSTM is now a module so
there was no need to recompile the kernel. The use of SSL greatly increases security but will also
lead to a rather significant performance loss due to the added load of certificate verification when
setting up new connections.

Please refer to the last section (6.7.1.5) of the configuration example on using DSTM with RPC on
a FreeBSD systems for more implementation results.

6.7.3. Linux (RedHat 7.3, 8.0, 9.0)

6.7.3.1 Availability

DSTM (currently version 1.4) for Linux is available from ENST and is virtually identical to the
FreeBSD version available from the same source. The Server and TEP components must be co-
located to work under this implementation and the client must be installed on any host that requires
DSTM, the components communicate via RPCv6. The mechanism is available from the link below.

http://www.ipv6.rennes.enst-bretagne.fr/dstm/

6.7.3.2 Initial Installation and Configuration

To install DSTM the files must first be unzipped/untared into an appropriate directory and the
system modules compiled and installed. Regardless of the module required, the same basic
configuration steps must be taken. First the system module must be compiled using the ‘make
system’ and ‘make installsystem’ commands. Mostly there is no need of a kernel rebuild but the
modules work only on a 2.4.* kernel where ipv6 is a module. Otherwise for new kernel versions,
see ‘linux/00README’ and the module ipv6f and sometimes kernel rebuild will be needed after
applying the given kernel patch. Also for the new kernels the module stuff (insmod etc.) has
changed and hence must be updated.

The RPCv6 patch is not required even when using RPC. When using TSP + SSL one needs
certificates as described in the FreeBSD section 6.7.2. When only using TSP certificates are not
needed.

6.7.3.3 Server/TEP Installation and Configuration

Installing the Server/TEP module (rpcdstmd), is done by moving to the ‘/dstmd/server’ directory
and running the ‘make’ and ‘make install’ commands.

IST-2001-32603
Deliverable D2.3.3-bis1

 108

The server is configured via the rpcdstmd.conf file that takes the following format:

subnet 194.80.38.225 netmask 255.255.255.240 { # IPv4 address pool used

default-lease-time 1200;

 tep6 2001:630:80:7100::1; # IPv6 address of the TEP

 tep4 194.80.38.38; # IPv4 address of the TEP

 range 194.80.38.227 194.80.33.230; # Part of the pool used for

allocations

}

There is some minor additional setup to be done at this point before the server can be started. First,
IPv4 forwarding must be enabled:
 # sysctl -w net.ipv4.ip_forward=1.

Also, a lease file must be created:
 # touch /var/db/rpcdstmd.lease

The needed modules are now automatically loaded and tunnels re created if needed, so there is no
need for “- load” or “-create” options when running the server.

When running the server with RPC support one can execute:
/usr/src/sbin/dstmd/server/rpcdstmd –notsp –rpcport 6000

To start the server with TSP support the command is the following:
 # /usr/src/sbin/dstmd/server/rpcdstmd –tspport 6000

When using both SSL and TSP the program rpcdstmd has to be started with the following
additional options:
 -key /etc/dstmd/cert.pem –ca /etc/dstmd/cacert.pem

Of course the filenames “cert.pem” and “cacert.pem” need to be substituted with the real
certificates on the system.

Also add the options

 -pass /etc/dstmd/pass and
 -cert /etc/dstmd/accepted.pem

if either file exists and should be used.

Sometimes when the modules like dti.o are required, they do not load while launching the sever
then the moduls should be loaded by using “insmod dti.o” or the “modprobe” after changing to
the dstmd/linux/dtmod directory.

IST-2001-32603
Deliverable D2.3.3-bis1

 109

6.7.3.4 Client Installation and Configuration

To install the DSTM client module (dstmd) the ‘make’, ‘make install’ commands should be run
from the ‘/dstmd’ directory but no further configuration is necessary.

To run dstmd, a number of command line options must be included. One has to specify the server
name (or IPv6 address) and port number that identifies the server and also an option to load the rpc
module is necessary under Linux.

dstmd -rpcserver penguin.trans.ipv6-uk.net -port 6000

When using TSP one can use the following command:
 # dstmd –port 3545 –tspserver 2001:688:1fa1:2::100

When also using SSL with TSP one has to start the dstmd with the additional options:
 -key /etc/dstmd/cert.pem –ca /etc/dstmd/cacert.pem

Also add the following options when either file is present and should be used:
 -pass /etc/dstmd/pass

 -cert /etc/dstmd/accepted.pem

In order to use IPv6 transport for DNS queries one should put IPv6 address(es) in the nameserver
lines in the file /etc/resolv.conf on a client host. Otherwise one should at least not specify a
hostname for the rpcserver option of the dstmd client if one uses IPv4 name resolution.

When the module dstm.o is required, it sometimes does not load automatically when launching the
client. I those cases the module can be loaded by hand through the use of either the command
“modprobe” or “insmod” (after changing to dstmd/linux/dstmmod).

6.7.3.5 Operational and Installation Issues

When installing DSTM under Linux (RedHat 7.3 or 8.0) there were a number of issues encountered.
Primarily, the kernel source (exact same version) is required in order to install properly and under
RedHat (and perhaps other Linux derivatives) this is not in the default location. This can be
resolved by providing a command line redirect. Also, when compiling the system module, the ‘make
system’ and ‘make installsystem’ commands should be run, not ‘make systeminstall’ as
listed.

Installation of DSTM on a Linux host with kernel 2.5.70, things where a little more complicated as
IPv6 was not a module which made it necessary to patch the kernel itself and rebuild it completely.
Even in this case though the modules dti.o or dstm.o sometimes fail to load automatically.

When installing the DSTM client (dstmd), the make install command fails due to dstmd.8 not being
in /usr/local/man/man8. Under RedHat there is no /usr/local/man/man8 directory so this must be
created and the dstmd.8 file copied there manually.

Also, when installing the server (rpcdstmd) the instructions specify to use ‘make depend’, ‘make’
and ‘make install’, we found the ‘make depend’ command did nothing and so is unnecessary.

IST-2001-32603
Deliverable D2.3.3-bis1

 110

When installation and configuration is accomplished it should be possible for every DSTM client to
communicate with IPv4 hosts using IPv4 applications. Moreover if the DSTM server is used with
SSL options then the IPv4 address allocation takes place only after verifying the certificates. DSTM
clients without a valid certificate are denied for address allocation. This greatly increases security
but also slows down the process of address allocation and hence initialisation of IPv4
communication. It also makes it a little more complicated for the user end as one needs to come by
the SSL certificates beforehand.

As with the FreeBSD implementation IPv4 communication can only by initiated by a DSTM client
because the DSTM client is the one that requests the tunnel to be set up. There exists however a
DSTM implementation that was not tested yet which permits communication to be initiated by
outside (IPv4-only) hosts.

6.7.3.6 Conclusions

While the Linux version of DSTM is essentially the same as in FreeBSD, the installation and
configuration is less complicated than the FreeBSD version and should be given preference. For
example, the RPC patch is not required and various configuration options are simplified under
Linux.

In addition to the version evaluated here from ENST, there is a gateway/TEP mechanism available
in the 6wind routers and there is now a DSTM Client for Windows XP from 6talk.net that should
work with this implementation. However, while we can confirm that the 6wind gateway works
with this to some extent, neither has been evaluated here.

7. Configuration Examples: IPv6 translation methods

7.1. NAT-PT

7.1.1. NAT-PT (RedHat 7.3)

7.1.1.1 Availability

This implementation of NAT-PT was developed by ETRI using the Linux kernel 2.4.0-test9 and
should work on any kernel 2.4.x or above (it was tested successfully on RedHat7.3, 8.0 and various
USAGI kernels). It also includes both DNS and FTP ALGs functionality and is available from the
following link:

http://www.ipv6.or.kr/english/natpt-overview.htm

7.1.1.2 Installation and Configuration

To install NAT-PT the files must first be unzipped/untared into an appropriate directory and some
minor configuration must be done.

Device Installation and Configuration

IST-2001-32603
Deliverable D2.3.3-bis1

 111

Primarily the IPv4_addresses.list file must be populated with the IPv4 address pool to be used and a
static binding made for the DNS. This file takes the form of a basic list shown below:

194.80.38.226

194.80.38.227

194.80.38.228

194.80.38.229

DNS 194.80.38.225 2001:630:80:7100::10

Additionally, minor changes may be made to nat-pt_global.h and nat-pt.c to configure the network
prefix and the IPv4 and IPv6 network interfaces respectively though in our case this was
unnecessary.

The application is compiled using ‘make’ or ‘make clean’ and run using nat-pt. DNS must also be
properly configured in order for NAT-PT to create dynamic address bindings.

Host Configuration

No major changes are needed for host configuration however the DNS may need setting up. The
resolvers (DNS clients) on the IPv6 hosts must be configured to send DNS requests to an IPv6
address. This can either be the 'real' address of a native IPv6 DNS server, or the mapped address of
an IPv4 DNS server.

7.1.1.3 Operational Issues

A number of issues were encountered when compiling the NAT-PT device, primarily due to a
missing ‘included’ file, bpf.h. This file appears in 5 files; nat-pt_global.h, nat-pt.c, alg_manager.c,
utils.c and dns_alg.c and each reference must be updated in order to make the compile successful.
Additionally, in nat-pt.c a constant from the ‘clock’ function CLK_TCK is used erroneously and
must be replaced by ‘time()’ which returns CLK_TCK.

7.1.1.4 Conclusions

Operation experience shows the mechanism to work both under normal conditions and when using
the ALG mechanisms but suggests the system is slightly unstable.

7.1.2. Ultima (FreeBSD 4.5)

7.1.2.1 Availability

Ultima is a NAT-PT implementation from BT labs, it supplies a NAT-PT device with DNS, FTP
and SIP ALG functionality. In this case, it was installed on FreeBSD 4.5 but should run on any
FreeBSD above version 4.2. It cannot however be directly downloaded from the Internet as is the
case above but is available on a case by case basis, below is a link the BTExact highlighting the
Ultima transitioning toolkit.

IST-2001-32603
Deliverable D2.3.3-bis1

 112

http://www.ipv6.btexact.com/activities/projects.html#ultima

7.1.2.2 Installation and Configuration

Installation of Ultima is two-fold in that there is the basic device configuration but also the http
interface setup, which is rather less well documented. However, installation of the device itself is
straight forward, simply unzip the file into an appropriate directory and run the ultima_install
program.

Device Installation and Configuration

Setup is through a text-based interface which is both comprehensive and simple to use and can also
be run at any time to reconfigure the device. It follows these basic steps.

IPv4 interface Specify IPv4 interface of device

IPv6 interface Specify IPv6 Interface of device

IPv6 prefix Specify IPv6 prefix of Ultima

Address Pool configuration Configure IPv4 address pool, selecting this
option allows the addition or removal of
IPv4 addresses in the address pool and the
addition or removal of static address
mappings. At least one static mapping is
required for the DNS

Lan/wan and DNS options Allows selection of lan or wan operating
modes (basically turns on or off rtadv.

 Configures DNS ALG to allow IPv4 or IPv6
queries to get forwarded or blocked on
either interface

http interface password Configures http interface password (see
below)

The http interface setup is rather more complicated. This requires both the apache and openSSH
ports to be installed onto the machine in addition to numerous other PERL modules. Afterwards, the
interface package must be complied and installed. Once installed, the device can be operated
remotely via a browser.

Host Configuration

No major changes are needed for host configuration however the DNS options may need to be
configured.

7.1.2.3 Operatioonal Issues

The installation procedure threw up several complications in that the supplied ‘ultima_NAT-PT.zip’
package cannot be easily unzipped in FreeBSD with the usual methods, the package seems to be
windows-based with MSWord documents supplied as opposed to the usual README text files. To

IST-2001-32603
Deliverable D2.3.3-bis1

 113

unzip the files, PKZip for UNIX was used though they could be unzipped in Windows and
transferred to UNIX.

Additionally, the file permissions had to be changed as they were not set to be executable by any
user by default (ultima_install, ultima, get_passwd, check_prefix, check_IPv4_address) so the
device could not be configured or run.

Finally, the http interface while very nice does not come with installation instructions beyond the
requirements for the various ports and PERL modules.

7.2. ALG

7.2.1. WWWoffle

This configuration example assumes that wwwoffle is configured to listen on all IPv4- and IPv6-
sockets of the server it is installed on. The sample configuration that comes with wwwoffle source
packages may be used as a reference.

Note that this configuration does not cover all cache-specific options. The following parts of the
wwwoffle configuration file are excerpts that cover only the IPv6-specific parts of the
configuration.

7.2.1.1 StartUp-Section

This section sets options that are parsed by wwwoffle on startup.

StartUp
{

 # Bind to all available IPv4-addresses.
 bind-ipv4 = 0.0.0.0

 # Bind to all available IPv6-addresses.
 bind-ipv6 = ::

 # Let proxy listen on port 8080.
 http-port = 8080

 # Let HTTP-server for wwwoffle-control run on port 8081.
 wwwoffle-port = 8081

 # Spool-directory for cache.
 spool-dir = /var/spool/wwwoffle

 # Do syslogging.
 use-syslog = yes

 # Set password for control pages to "secrect".
 password = secret

 # Max.-number of server-threads.
 max-servers = 8

 # Max.-number of servers when fetching pages.
 max-fetch-servers = 4

 }

IST-2001-32603
Deliverable D2.3.3-bis1

 114

Please note that the performance-specific options need to be adjusted to fit individual needs. Most
options that do not directly concern IPv6 are left to their default values.

7.2.1.2 LocalHost-Section

This section contains aliases and IPs under which the wwwoffle server is known. Requests to any of
those aliases or IPs are not cached. Configuring this section is trivial. Valid entries are names and
IPs without wildcards. The first entry will be used as the proxy’s name which is relevant for some
features of the wwwoffle configuration page.

LocalHost
{
 proxy.mynetwork.org
 proxy.ipv6.mynetwork.org
 localhost
 127.0.0.1
 ::ffff:127.0.0.1
 ip6-localhost
 ::1
 128.176.184.159
 2001:638:500:200::ff00
 3ffe:2a00:100:7efa::2
 3ffe:666:3ffe::22
}

7.2.1.3 Other Sections

In general, all other sections are configured as they would be for an IPv4-only wwwoffle.
Additionally, for options which hold an IPv4 address, IPv6 addresses may be used as well in the
same manner as in the previous section.

7.2.1.4 Client-Side Configuration

All clients in the IPv6-only subnet should be configured to use the wwwoffle server as a proxy. This
is done by configuring all web- and ftp-clients and similar applications accordingly.

7.2.2. WWW6to4 HTTP Proxy

The www6to4-1.5 HTTP proxy is a small program that is meant to act as a dual-stack front end to
an IPv4 only browser. It has a few other features but those are entirely optional and not discussed
here. This proxy is meant to run on a client machine and not to server a large number of clients and
keep a cache for them. For the latter one is much better off with a full- fledged proxy like squid or
wwwoffle.

IST-2001-32603
Deliverable D2.3.3-bis1

 115

The program is primarily distributed in source form, but binary packages for NetBSD and Debian
Linux can also be found. Compilation from source normally involves no more than typing ‘make’ in
the source directory. To run it, one needs a configuration file www6to4.conf including at least the
following two lines:

listen-to 127.0.0.1,::1
listen-port 8000

If the www6to4.conf configuration file is located in the /etc-directory, www6to4 can simply be
started with:

If the configuration file is located somewhere else its location needs to be given at the command
line:

www6to4 –c <path to configuration file>/www6to4.conf

Note that there is no reason why www6to4 runs as root, it can run as an ordinary user or even as
user ‘nobody’.

Once www6to4 is running, all that is left to do for the user is to configure his or her web browser to
use it as its the proxy (localhost:8000).

www6to4 is not an ftp proxy, it will proxy for http and https only. However, www6to4 is capable of
‘forwarding’ ftp URL’s to another proxy that does understand ftp. In that case a so-called ‘forward-
file’ needs to be configured by adding the following line to the www6to4.conf file:

forwardfile <path_to>/www6to4_forward.conf

The www6to4_forward.conf should then contain a line like the following example:

ftp://* proxy.mydomain.tld:8000

The following functionality was recently requested and added by the 6NET project to www6to4. I
will be officially integrated in the next release (version 1.6). The program www6to4 has now a new
option called “-forwardingonly”. This is useful in IPv6-only networks, where one wants to
connect directly to IPv6 servers over IPv6, but where requests to IPv4 servers need to be forwarded
to another (per site) dual-stack proxy. The new option provides exactly this functionality; it looks
up the DNS IPv6 address recors (AAAA) for the requested HTTP server and only if no such records
are found wil it forward the request according to the rules in the forward file (typically named
/etc/www6to4_forward.conf). The forward file then needs to contain the following lines:

ftp://* proxy.mydomain.tld:8000

http://* proxy.mydomain.tld:8000

IST-2001-32603
Deliverable D2.3.3-bis1

 116

These lines tell the www6to4 program to forward any ftp or http request to proxy.mydomain.tld at
port 8000.

7.2.3. Postfix Configuration

7.2.3.1 Server side configuration

In most cases, postfix' configuration files are located in /etc/postfix. Basically, only the file main.cf
needs to be modified. When modifying main.cf, it is important to be aware of potential security
risks that may occur if these modifications are not done carefully. One should under all
circumstances avoid creating open relays that allow spam- and bulk-mailers to abuse the ALG as a
relay-server.

To be able to relay mail from the IPv6-only subnet, this subnet has to be added to the trusted
subnets (the class of subnets that are allowed to relay mail via this server). By default, postfix trusts
all machines that are in the same subnet as the postfix-server. This behaviour is configured by
setting

 mynetworks_style = subnet

in main.cf. We assume that the IPv6-only subnet has the prefix 3ffe:400:10:110::/64. To allow hosts
in this subnet to relay via this postfix-server, we add the prefix to “mynetworks” in main.cf.

 mynetworks = [2001:638:500:200::]/64, [3ffe:400:10:110::]/64, \

 [::1]/128, 127.0.0.0/8

Note that in this case, 2001:638:500:200::/64 is the subnet that the postfix-server is located in.

Using the two options above allows relaying from the IPv6-only subnet for which the postfix-server
acts as an ALG.

7.2.3.2 Client Side Configuration

The postfix server above may be used as a normal SMTP-server by any e-mail clients in the IPv6-
only subnet. This has to be configured for each application separately.

7.2.3.3 Mail Transfer Applications (MTAs)

MTAs such as postfix and sendmail can be configured to use an SMTP-smarthost. In postfix’ case,
this is done by adding the following option to main.cf:

IST-2001-32603
Deliverable D2.3.3-bis1

 117

 relayhost = [2001:638:500:200:0:0:0:ff00:25]

This lets postfix relay all outgoing mail via 2001:638:500:200::ff00:25. 2001:638:500:200::/64 is
the subnet that the postfix server is located in.

Using the two options above allows relaying from the IPv6-only subnet for which the postfix server
acts as an ALG. This is a save configuration in terms of relay protection as long as only the IPv6-
only subnet is allowed to use the postfix server as a relaying smarthost.

7.2.4. SMTP Relaying with Sendmail

7.2.4.1 From IPv6 to IPv4

One can set up a single dual-stack mail server to act as a so called ‘smart host’ (smart mail relay)
for IPv6-only hosts. A sendmail configuration file ‘sendmail.cf’ is typically generated from an m4
macro file. One should add the following lines to this m4 macro file:

DAEMON_OPTIONS(`Family=inet, address=0.0.0.0, Name=MTA')dnl
DAEMON_OPTIONS(`Family=inet6, address=::, Name=MTA6, Modifiers=O')dnl

IPv6 is marked optional in the above setting so that the ‘sendmail.cf’ generated from it can be used
on IPv4-only kernels as well.

Once the dual-stack mail server has been set up, IPv6-only hosts can configure it as their ‘smart
host’. For sendmail a smarthost can be configured by adding the following line to its existing
‘sendmail.cf’ configuration file:

DSmail64.mydomain.tld

Here ‘mail64.mydomain.tld’ is the domain name of the dual-stack mail server that has been set
up.

7.2.4.2 From IPv4 to IPv6

Two methods can be used to relay email through a dual-stack sendmail server to an IPv6-only mail
server. The first method is by defining IPv6-only relays in the configuration file of the dual-stack
sendmail. An example of this is to set the so-called ‘LUSER_RELAY’ in the dual-stack sendmail to the
IPv6-only mail server in such a way that all email destined for email accounts not known at the
dual-stack server are relayed to the IPv6-only mail server. This configuration for the dual-stack

IST-2001-32603
Deliverable D2.3.3-bis1

 118

sendmail can be generated by adding a line lithe the following to the m4 macro file it is generated
from:

define(`LUSER_RELAY', `relay:mail6.mydomain.tld')

The second method to relay email through a dual-stack sendmail server to an IPv6-only mail server
(from IPv4-only hosts) is by setting up the MX records for the domain in question appropriately.
Let us take as example the domain ‘mydomain.tld’ and assume that an (optional) IPv4-only mail
server ‘mail4.mydomain.tld’, a dual-stack mailserver ‘mail64.mydomain.tld’ and an IPv6-only mail
server ‘mail6.mydomain.tld’ have been set up for this domain.

 An appropriate DNS configuration should then list MX records in the following order of priority:

mydomain.tld. IN MX 0 mail6.mydomain.tld.
mydomain.tld. IN MX 10 mail64.mydomain.tld.
mydomain.tld. IN MX 20 mail4.mydomain.tld.

In other words, the IPv6-only mail server(s) should have lowest priority code (meaning highest
priority mail server), followed by the dual-stack mail server(s) and finally the IPv4-only mail
server(s), if any, should be given the highest code(s) (and thus the lowest priority). Of course,
mail6.mydomain.tld should have an AAAA DNS record, mail64.mydomain.tld should have both an
AAAA and an A DNS record, while mail4.mydomain.tld would only have an A record in DNS.

IPv4 clients will then send email to (one of) the IPv4 capable mail servers, which will relay it to
(on of the) IPv6-only server(s). In the example above, an IPv4 client will send its mail to the first
mail server on the list that has an IPv4 address: the dual-stack server mail64.mydomain.tld. Only if
mail64.mydomain.tld is unreachable or down will it (try to) send the email to mail4.mydomain.tld.
After mail64.mydomain.tld has received the email it will relay it to the higher priority mail server
mail6.mydomain.tld, which is IPv6-only.

IPv6 capable clients will try to send their email for domain mydomain.tld directly to the IPv6-only
mail server mail6.mydomain.tld. If this is (temporarily) unreachable those clients will instead use
the dual-stack server mail64.mydomain.tld.

Note that most sites will want to have a backup mail server for both IPv6 and IPv4. This means that
at least two of the mail servers need to be IPv6 capable and two of them need to be IPv4 capable as
in the example above.

7.2.5. The totd DNS-Proxy (Linux/Unix)

The compilation of totd is quite straightforward. After unpacking the sources in any directory on the
totd server, it can be configured and compiled by issuing the following commands. Preferably,
compilation is done as an unprivileged user.

./configure --prefix=/usr/local
 # make depend
 # make

IST-2001-32603
Deliverable D2.3.3-bis1

 119

Then, as root, totd may be installed with the command:

 # make install

The configuration file /usr/local/etc/totd.conf has to be edited to include the following lines:

 forwarder 3ffe:400:10:100:201:2ff:feb5:3806
 prefix fec0:0:0:ffff::
 totuser totuser

Explanation of the lines above:

• forwarder: IP address of parent DNS to query. One may also append a port number by
adding “port <portnumber>” to use a specific port. It is possible to use multiple
forwarders which will be queried in descending order if the previous DNS server failed to
reply.

• prefix: prefix that totd needs to prepend to converted IPv4 addresses. If multiple prefixes
are given, totd will assign them to converted addresses in a round-robin manner.

• totuser: userid which totd uses after dropping root-privileges. For security reasons it is
strongly suggested to use this option. One can add a user called “totuser” by issuing the
following command as root:

useradd -c "totd User" -s /bin/false totuser

Note: It is prudent to additionally change the password of totuser if the Linux server which will be
running totd does not disable accounts that did not get an initial password. This can be achieved by
using the following command

 # passwd totuser

There are various other options which may be set in totd.conf but do not play an important role in
this example. One can refer to the totd.conf.sample in totd’s source tree for information on these
additional options.

One may want to add an init-script to /etc/init.d to start totd automatically at system boot. The
Linux distribution’s documentation should elaborate on how to do this. Most distributions provide
sample init-scripts or init-script skeletons which are very useful for building this init-script.

The daemon totd is started by calling:

 # /usr/local/sbin/totd

With "ps -af | grep totd" one can verify that totd is actually running.

IST-2001-32603
Deliverable D2.3.3-bis1

 120

7.3. TRT

7.3.1. pTRTd and totd on a Linux router

7.3.1.1 Prerequisites:

For this example it is assumed that there is a Linux router which has two interfaces (eth0 and eth1)
and which serves as an edge router to an IPv6-only subnet on eth1 which has the following prefix:

3ffe:400:10:110::/64

The Linux router itself has the IPv6 address 3ffe:400:10:100:250:4ff:feec:b3b3. To provide
connectivity to IPv4-hosts for the subnet mentioned above, it will be shown how a TRT setup using
pTRTd and totd is implemented. It is also assumed that there is a DNS server available under the IP
3ffe:400:10:100:201:2ff:feb5:3806. This server will be used to resolve DNS queries done by clients
with IPv6-only connectivity and forwarded by totd.

7.3.1.2 Overview of installation steps

The following steps summarize the configuration work that has to be performed to provide TRT
functionality on the Linux router for the 3ffe:400:10:110::/64 subnet:

• Installation of totd on a dedicated host. Not that this host does not necessarily have to be a
dual-stack host nor does it have to be the same host that pTRTd will run on.

• Configuration of totd to use existing DNS and to prepend a specific prefix to converted IPv4
addresses.

• Starting totd.

• Check that all prerequisites for the installation of pTRTd on the Linux router are met.

• Installation of pTRTd and starting it.

7.3.1.3 Installation of totd

Please refer to section 7.2.5 on how to install and configure totd.

Totd does not necessarily need to be installed on a dual-stack host or on the (Linux/Unix flavor)
router that will be running pTRTd. However, the server hosting totd has to have IPv6-connectivity
because it has to be reachable from an IPv6-only subnet. If there is an IPv6-capable DNS available
to the totd sever, there is no need for it to have IPv4-connectivity. Otherwise, IPv4-connectivity is
needed for contacting a DNS with only an IPv4 stack.

IST-2001-32603
Deliverable D2.3.3-bis1

 121

7.3.1.4 Installation of pTRTd

There are a few requirements that have to be fulfilled before pTRTd can be used:

• tun/tap driver support needs to be present in the Linux kernel (Version 2.2 or 2.4) either as a
module or compiled into the kernel itself.

• A working totd server has to be present to provide trans lated IPv4 addresses. Totd has to be
configured to prepend the prefix fec0:0:ffff:: to converted IPv4 addresses. Note that
fec0:0:ffff:: is a site-local prefix. It does not make sense to use global prefixes.

• /sbin/ip has to be present to allow pTRTd to set up an interface and a route.

Compilation and installation of pTRTd is trivial. After unpacking the sources on the Linux router,
configuration and compilation of pTRTd is done by issuing the following commands:

 # ./configure --prefix=/usr/local
 # make

As root, pTRTd may be installed to /usr/local by running:

 # make install

The usage of pTRTd is as follows:

ptrtd [-i [<driver>:]<interface>] [-p <prefix>] [-l <prefix length>]

<prefix> defaults to fec0:0:0:ffff::/64 which means that there is no need to give the “-p” option if
totd was configured to use this prefix. In general, there should be no need to give any options when
starting pTRTd if TRT is set up according to this description. PTRTd is run by simply starting the
daemon:

 # /usr/local/sbin/ptrtd

If possible, one should perform a few checks to see whether or not pTRTd came up properly:

• "ps -ef | grep ptrtd" shows whether pTRTd is indeed up and running.

• "ip link show" verifies that a tap0 interface came up after starting pTRTd.

• "ip route show" checks whether or not there is a route which routes fec0:0:0:ffff::/64 via
the tat0 interface mentioned above.

7.3.1.5 Configuring clients in the IPv6-only subnet

It is necessary to configure all clients in the IPv6-only subnet to use the totd-server as DNS or
otherwise no proper translation of IPv4 addresses is done.

To test the configuration, one can use an IPv6 enabled application and try to contact a server that is
normally only reachable via IPv4, e.g. start an IPv6-capable browser like Mozilla and point it to a
web server that only has an IPv4 address. Ideally, the browser is configured not to use any proxies

IST-2001-32603
Deliverable D2.3.3-bis1

 122

for testing purposes. If it still can display the pages served by the IPv4-only server, the TRT-
installation was successful.

7.3.2. NTPD Time Server as a Proxy

Currently the ntpd time server does not support IPv6 in its latest release. However, the next release
will support IPv6 and it can already be tested by fetching the latest ntpd development sources.
Building, installing and configuring ntpd with IPv6 support requires nothing special; it will simply
listen for requests over both IPv4 and IPv6 and it can talk to either IPv4 or IPv6 ntpd servers.

7.3.3. The Faith TRT for FreeBSD and NetBSD

The transport relay translator faithd [RFC3142] is an IPv6-to-IPv4 TCP relay. Faithd relays TCP
(not UDP, RTP or other transport protocols) from IPv6 to IPv4 (not the other way around). The
faith daemon needs to be run on a dual-stack router between you local IPv6 site and outside IPv4
network. The daemon needs to be invoked per TCP service (TCP port number).

7.3.3.1 Example Setup

This example setup consists of two hosts on the same link running NetBSD software which are
connected to a gateway. One of the hosts will be the TCP translator of the connections that the other
host tries to establish. Once the TCP translation has been performed, the TCP connection will
follow the normal way through the gateway.

 TCP-Connection

IST-2001-32603
Deliverable D2.3.3-bis1

 123

7.3.3.2 Installation

The installation of the TRT consists in running a daemon called faithd included with the NetBSD
software. This daemon must be run for every service we want to provide. To be able to run the
daemon, previously is necessary to enable an interface called faith.

When the faithd2 daemon receives TCPv6 traffic from the faith interface it will perform the
translation to TCPv4. The destination of the TCPv4 connection will be determined by the last 4
octets of the original Ipv6 destination. It is necessary to reserve a prefix to perform this service. For
example, if the prefix 3ffe:400:10:110:: is reserved and the Ipv4 destination is 10.1.1.1, the original
destination should be 3ffe:400:10:110::0a01:0101. The address translation can be performed by
hand but of course you are better off using a DNS proxy such as totd (see section 7.2.5).

The faith3 interface captures IPv6 traffic for implementing IPv6 to IPv4 TCP translations. To be
able to use this interface is necessary to recompile the kernel, enabling the pseudo-interface faith.

The following example shows how to use faithd to provide a TCP relay for the ssh service using
3ffe:400:10:110::/64 as faith prefix.

Perform the following steps on the router that will run the faith relay service:

1. If there already is an IPv6 TCP server for the “ssh” service, i.e. sshd, disable this daemon.

2. Execute the following as root to enable faith support:
sysctl –w net.inet6. ip6.accept_rtadv=0

 # sysctl –w net.inet6.ip6.forwarding=1

sysctl –w net.inet6.ip6.keepfaith=1

Route packets with destination address within the faith prefix to the “faith0”:
ifconfig faith0 up

 # route add –inet6 3ffe:400:10:110:: -prefixlen 64 ::1

route change –inet6 3ffe:400:10:110:: -prefixlen 64 –ifp faith0

3. Start “faithd” as root as follows:
faithd ssh /usr/sbin/sshd sshd -1

More examples that where successfully tested by the authors:
 # faithd ftpd /usr/libexec/ftpd ftpd –l

 # faithd sshd

 # faithd telnet

 # faithd telnet /usr/libexec/telnetd telnetd

 # faithd smtp

 # faithd www

 # faithd https

 # faithd irc

2 More info about faithd in the manual pages.
3 More info about faith in the manual pages.

IST-2001-32603
Deliverable D2.3.3-bis1

 124

 # faithd icqs

 # faithd pop3

 # faithd nntp

If inetd(8) on your platform has support for faithd, it is possible to setup faithd service (almost) like
any other service started from inetd and configure it in /etc/inetd.conf. At least recent FreeBSD
releases have included support for this.

On NetBSD one can make the above example setup permanent with automatic configuration at boot
time. One simply creates a configuration file /etc/ifconfig.faith0 including the following lines:

 # pseudo interface for IPv6/IPv4 transport relay

 create

 inet6 3ffe:400:10:110:: prefixlen 64

Also add the flowing line(s) to /etc/sysctl.conf:

 net.inet6.ip6.keepfaith=1

 net.inet6.ip6.forwarding=1

 # in case you don’t want to do regular IPv4 forwarding at all:

 net.inet.ip.forwarding=0

In addition it is strongly recommended to limit access to the translator. One way to do so is (at least
on NetBSD) by creating a /etc/faithd.conf file restricting allowed connections. In the following
example we assume that 3ffe:400:10::/48 is the address space in use at the site:

 # permit anyone from our site to use the translator, to connect to

 # the following IPv4 destinations:

 # any location except 10.0.0.0/8 and 127.0.0.0/8

 # Permit no other connections.

 #

 3ffe:400:10::/48 deny 10.0.0.0/8

 3ffe:400:10::/48 deny 129.168.0.0/16

 3ffe:400:10::/48 deny 127.0.0.0/8

 3ffe:400:10::/48 permit 0.0.0.0/0

7.3.3.3 Problems

The main problem in this platform is the scalability. The address resolution used in this case is
made by the hosts table. That means that every server we want to access should be one entry of the
hosts table. We can try to solve this problem using a special DNS server called totd, which has not
been used in this platform.

IST-2001-32603
Deliverable D2.3.3-bis1

 125

One important problem with the TRT to be able to provide HTTP is the absolute links in the web
pages, because the TRT can not parse them. One solution to that problem could be an ALG
(Application Layer Gateway) which will manage with the absolute links properly. That problem
makes TRT not recommended in HTTP services.

8. Appendix A -- Availability of tools and mechanisms
This Chapter will include a list of implementations (where to get them) of the mechanisms and tools
described above and maybe those that could not be covered in the configuration examples. Also
platforms that support IPv6 will be mentioned. This list is not yet complete, but it will be updated in
the next version of the cookbook.

8.1. Configured Tunnel

There is no known platform that has IPv6 support and doesn’t also offer the feature of setting up
IPv6- in-IPv4 tunnels.

8.2. Tunnel Broker

8.2.1. OpenLDAP/ssh-based tunnel broker at University of Southampton.

8.2.2. IPv6tb (Tunnelbroker by CSELT/Telecom Lab Italia)

The software is available for download at:

http://carmen.ipv6.tilab.com/ipv6/download.html

8.2.3. OpenVPN-based tunnel broker at JOIN/University of Münster

JOIN provides setup scripts and a full documentation of the tunnel broker on the project’s website
at

http://www.join.uni-muenster.de

8.3. Automatic Tunnels

To make a list for all those implementations, which support this transition mechanism is rather
fruitless. There is no known platform that implements IPv6, that does not have this feature, at least
none, the workpackage participants know of. Also the use of this mechanism is no longer
recommended. It has been replaced by much more sophisticated mechanisms.

IST-2001-32603
Deliverable D2.3.3-bis1

 126

8.4. 6to4

8.4.1. Cisco IOS

The feature “IPv6 Tunnelling: Automatic 6to4 Tunnels” is currently available in the following
releases of Cisco IOS:

GD Release: 12.3(2)T4

LD Release: 12.3(5)

ED Releases: 12.3(4)XD, 12.3(4)T2, 12.3(3)B, 12.3(2)XE, 12.3(2)XC, 12.3(2)XB1, 12.3(2)XA2,
12.3(2)T3, 12.3(1a)BW, 12.3(1a)B, 12.2(20)S, 12.2(17a)SX1, 12.2(15)ZL1, 12.2(15)ZJ3,
12.2(15)T9, 12.2(14)ZA5, 12.2(14)SX1a, 12.2(14)S6, 12.2(13)ZF2, 12.2(13)ZE, 12.2(13)ZD,
12.2(13)T9, 12.2(11)YV1, 12.2(11)YU, 12.2(11)YT2, 12.2(11)YQ, 12.2(11)T9, 12.2(8)TB8,
12.2(8)YN, 12.2(8)T9

8.4.2. ExtemeOS

Extreme provides a special IPv6 Software for its Switches to support IPv6. This Add-on
“ExtremeWare IPv6” contained the 6to4 feature from the beginning.

8.4.3. WindowsXP

Though newer service packs have changed handling and behaviour of the mechanism, WindowsXP
contains 6to4 support out of the box.

8.4.4. Windows2000

Windows 2000 contains 6to4 support when the “Microsoft IPv6 Technology Preview” is installed.

8.4.5. Linux

The USAGI kernel patches contained 6to4 support since snapshot 2001/02/19. The first official
vanilla kernel sources included 6to4 tunnelling with versions 2.2.19 and 2.4.6 respectively.

8.4.6. *BSD/Mac OS X

The KAME stack first included 6to4 March 2000. Official *BSD releases have KAME code built in
since FreeBSD 4.0, NetBSD 1.5, OpenBSD 2.7 and BSD/OS 4.2. MacOS contains IPv6
functionality and with that Support for the stf interface since Version 10 (aka Version X Jaguar).

IST-2001-32603
Deliverable D2.3.3-bis1

 127

8.5. 6over4

Other than an implementation by Microsoft and an early inclusion of this mechanism into EFTs of
the Cisco IOS (based on 11.3T, but which was later removed due to no customers making use of it),
we know of no current implementations of this transition mechanism.

8.6. ISATAP

8.6.1. Cisco IOS

ISATAP support is currently available in the following versions of Cisco IOS:

GD Release: 12.2(15)T10

LD Release: 12.3(5)

ED Release: 12.3(4)XD, 12.3(4)T, 12.3(3)B, 12.3(2)XB, 12.3(2)XA2, 12.3(2)T2, 12.3(1a)BW,
12.3(1a)B, 12,2(20)S, 12.2(17a)SX1, 12.2(15)ZJ3, 12.2(15)T9, 12.2(14)SZ4, 12.2(14)SX2,
12.2(14)S6

Linux

ISATAP support has been included in the USAGI package from snapshot 20011112 on. The first
stable release to include ISATAP was based on kernel 2.4.18 (2.2.20) and became available on
April 1st, 2002.

There is to date no Linux distribution that includes ISATAP support in its preconfigured kernel.

8.6.2. Windows

Windows XP can be configured as ISATAP client since Service Pack 1. .NET/Windows 2003-
Server can be configured as both client and server for ISATAP.

8.6.3. BSD

Due to license requirement owing to its IPR (draft-ietf-ngtrans-isatap-13.txt) KAME is no longer
working on ISATAP in their stack and have removed it after the draft was released in March 2003.
Older Versions of the KAME stack included ISATAP support since January 2003, when KAME
began to work on implementing draft- ietf-ngtrans- isatap-08.txt.

8.7. Teredo

Windows 2003 Server includes a Teredo implementation.

Teredo is included in the Advanced Networking Pack for Windows XP SP1.

It was used by the Microsoft ThreeDegrees peer-to-peer trial.

IST-2001-32603
Deliverable D2.3.3-bis1

 128

8.8. Tunnel Setup Protocol (TSP)

8.9. DSTM

The ENST team has an implementation: http://www.ipv6.rennes.enst-bretagne.fr/dstm.

The 6TALK initiative from ETRI has released a DSTM implementation, inc luding a Windows
client, see: http://www.6talk.net/dstm/

8.10. TRT

Currently only a few known TRT implementations exist. One is FAITH [FAITH]. The program
comes as part of the KAME project and has been written by Yoshinobu Inoue and Jun-ichiro itojun.
For more information on FAITH please refer to:

http://www.kame.net/newsletter/19981001

Another TRT implementation is The Portable Transport Relay Translator Daemon (pTRTd) which
is also a part of the KAME project. It has been implemented by Nathan Lutchansky and can be
found via

http://v6web.litech.org/ptrtd/

IST-2001-32603
Deliverable D2.3.3-bis1

 129

9. Appendix B: Enabling IPv6

9.1. MS Windows XP

Windows XP embeds IPv6 functionality by default, as the TCP/IP protocols suite includes both
IPv4 Internet Layer and IPv6 Internet Layer. However, Windows XP contains a separate
implementation of TCP and UDP for IPv6. Figure 9-1 shows the differences between a typical Dual
IP Stack and MS Windows XP implementation.

Aplication Layer

Transport Layer (TCP/UDP)

IPv4 IPv6

Network Interface Layer

Aplication Layer

IPv4 IPv6

Network Interface Layer

Transport
Layer

(TCP/UDP)

Transport
Layer

(TCP/UDP)

Figure 9-1:Left: typical IP dual stack layers, right: Windows XP IP layer stack

implementation

By typing at the command prompt

ipv6 install

it will enable and initialize IPv6 functionality on your host. By default, Windows XP automatically
configures the link- local address for each interface that corresponds to ins talled Ethernet adapters.
Link- local addresses have the prefix FE80::/64. The IPv6 address for each Ethernet interfaces
derives from the FE80::/64 prefix and a 64-bit suffix that derives from the IPv4 plus MAC
addresses of the network adapter. For example, a host with IPv4 address 195.225.29.15 and MAC
address 00-00-39-3f-7b-90 is assigned the link-local address fe80::200:39ff:fe3f:7b90. The host is
now ready to communicate with other host in the same Ethernet segment.

Windows XP supports stateless address autoconfiguration mode, with which network site- local
addresses, route entries and other configuration parameters are automatically configured based on

IST-2001-32603
Deliverable D2.3.3-bis1

 130

the router message advertisements. However, Windows XP hosts may manually be configured
through the network configuration shell “netsh” and following set of commands:

netsh interface ipv6 {add, set, delete, …} <parameters>

The netsh shell allows the configuration of the IPv6 addresses, the manipulation of the route entries
and many other tuning and showing configuration commands. For example, the following
command sets the site local address 2001:648:220::1 to the interface “Local Area Connection”:

netsh interface IPv6 add address “Local Area Connection” 2001:648:220::1

The complete syntax of the netsh command shell is the following:

netsh interface IPv6 add address InterfaceNameOrIndex \

 IPv6Address [[type=] unicast|anycast] \

 [[validlifetime=]Minutes|infinite] [[preferredlifetime=] \

 Minutes|infinite][[store=]active|persistent]

9.2. MS Windows 2000

A pre-production version of IPv6 stack can be enabled at a host running Microsoft Windows 2000
(Service Pack 1 or greater) by installing the “Microsoft IPv6 Technology Preview” software, which
is freely distributed at: http://msdn.microsoft.com/downloads/sdks/platform/tpipv6.asp. Initially, the
software should be saved locally and extracted. Through the “Control Panel Network & Dialup
Connection”, the IPv6 software is installed as new network protocol to an Ethernet interface.
Automatically, the IPv6 stack is enabled to all Ethernet interfaces of the host and the new files are
copied into the appropriate operating directories. Also, some network programs such as “telnet.exe”
are updated in order to support IPv6 functionality. Note that special care should be given when
installing IPv6 stack to Windows 2000 hosts with Service Pack 2 or 3 installed. In such cases, a
fixing program should be executed before the installation of the “Microsoft IPv6 Technology
Preview” software, as it is detailed documented in the relevant FAQ file.

The “Microsoft IPv6 Technology Preview” software includes various command line utilities that
are used for tuning and confirming the state of the IPv6 configuration in the Windows 2000 host. A
short description of some of the installed utilities follows:

• net.exe: Utility that stops or starts the IPv6 protocol and unloads/loads it from/to the
memory. The relevant commands are “net stop tcpipv6” and “net start tcpipv6”.

• ipv6.exe: Basic utility that configures network interfaces and updates the routing table. It
also retrieves and displays information about the IPv6 protocol.

• 6to4cfg.exe: Utility that sets up and configures a 6to4 tunnels.

• ping6.exe, tracert6.exe: The IPv6 version of the well-known utilities.

• ttcp.exe: Utility that sends TCP or UDP data between two networks nodes.

IST-2001-32603
Deliverable D2.3.3-bis1

 131

• ipsec.exe: Utility that configures policies and security associations for IPv6 IPSec traffic.

The IPv6 stack implementation in Windows 2000 supports stateless address autoconfiguration.
Therefore, if the site-local IPv6 router is configured to advertise the network prefixes, the Windows
2000 host can automatically configure its IPv6 address and routing table. Usually, this is sufficient
for the host to be connected to the IPv6 network and to be able to communicate with other hosts
using IPv6 protocols. In stateful mode, however, additional configuration of the IPv6 stack is
required through the command line utilities, especially the “ipv6.exe” tool. Some of the basic
configuration commands are presented in the next paragraphs:

ipv6 if [if#]:

It provides a view of the existing IPv6 enabled interfaces .

ipv6 adu <int no>/<ipv6 addr>[lifetime VL[/PL]] [anycast] [unicast]:

It adds an <ipv6 addr> address to the interface <int no>. The lifetime parameter specifies how long
the address will be valid. If this parameter is not specified, lifetime is infinite. If this parameter is
set to zero, the IPv6 address is removed. In the following example, IPv6 address
2002:968c:152d::968c:152d is assigned to the interface 2 (tunnel pseudo- interface):

ipv6 adu 2/2002:968c:152d:: 968c:152d

ipv6 ifc if# [forwards] [advertises] [-forwards] [-advertises] [mtu #bytes]
[site site-identifier]:

It configures special attributes of an IPv6 interface. It enables an interface to forward all packets
whose destination address is not assigned to the interface or to send/receive router advertisements.
Also, it sets the MTU size and site-identifier of an interface.

ipv6 rtu prefix if#[/nexthop] [lifetime L] [preference P] [publish] [age] [spl
site-prefix-length]:

It adds a route entry to the routing table. Routing entry time-to- live and preference are also set. For
example in the following example, a default static route (::/0) is added to through interface 2 and the
next hop address is set to ::131.107.152.32 (IPv4 tunnel destination IP address of a manually
configured tunnel):

ipv6 rtu ::/0 2/::131.107.152.32

IST-2001-32603
Deliverable D2.3.3-bis1

 132

ipv6 rt:

It displays the contents of the routing table.

ipv6 nc [if# [address]]:

It displays the total neighbor cache of a host or an interface.

It should be noted that IPv6 configuration is not saved permanently. Therefore, each time the
Windows 2000 hosts reboots, it requires reconfiguration for the IPv6 protocols. Therefore, it is
advised the entire configuration to be kept in an executable start-up batch file.

9.3. Sun Workstation with Solaris 8

Solaris 8 and its later versions fully support IPv6 protocols. The IPv6 implementation incorporates
all basic services and functionality of the protocol and it supports tunneled interfaces, such as IPv6
over IPv4. In previous versions of the Solaris operating system, IPv6 is supported only by installing
specific protocol patches.

IPv6 is enabled in Solaris 8 during the installation procedure. Otherwise, the following installation
steps should be followed:

1. Create an empty file named /etc/hostname6<interface>, where <interface> is the interface name
in which IPv6 will be enabled.

2. Reboot the system

3. Execute the following command to all the IPv6-enabled interfaces:

ifconfig <interface> inet6 plumb up

4. Execute the scripts located at /etc/init.d/inetinit.

After following the above procedure, the Solaris 8 host automatically start the Network Discovery
daemon, which will probe the local router for an IPv6 address and other configuration parameters.

For Solaris 8 and 9, you also need to edit /etc/nsswitch.conf to enable DNS resolution for the ipnode
entry.

9.4. FreeBSD

FreeBSD natively supports IPv6 functionality in its kernel. A FreeBSD host enters to the IPv6
stateless mode by just adding the option ipv6_enable="YES" in the /etc/rc.conf configuration file.
This forces the system to listen for router advertisement in order to set up the IPv6 interfaces and
other configuration parameters. In the following output logs, the FreeBSD host picked up two
different addresses as there were multiple router advertisements on the same broadcast domain.

IST-2001-32603
Deliverable D2.3.3-bis1

 133

ifconfig -a

 fxp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

 inet 147.102.220.1 netmask 0xffffff00 broadcast 147.102.220.255

 inet6 fe80::203:47ff:fece:3cee%fxp0 prefixlen 64 scopeid 0x1

 inet6 3ffe:2d00:2:220:203:47ff:fece:3cee prefixlen 64 autoconf

 inet6 2001:648:2:220:203:47ff:fece:3cee prefixlen 64 autoconf

 ether 00:03:47:ce:3c:ee
 media: Ethernet autoselect (100baseTX <full-duplex>)

 status: active

In the stateful mode, an IPv6 interface is configured through the options in the /etc/rc.conf file. For
example, assuming that the IPv6 interface is fxp0 and the IPv6 address is 2001:648:2:220, the
configuration file should like as follows:

ipv6_enable="YES"

ipv6_network_interfaces="fxp0"

ipv6_prefix_fxp0="2001:648:2:220"

ipv6_ifconfig_fxp0="2001:648:220::1 prefixlen 64"

ipv6_defaultrouter="2001:648:220::0"

ipv6_prefix_fxp0="3ffe:2d00:2:220"

ipv6_ifconfig_fxp0="3ffe:2d00:220::1 prefixlen 64"

ipv6_default_interface="fxp0"

9.5. Redhat

Enabling IPv6 to Redhat kernel requires either to recompile the kernel with IPv6 support or load an
appropriate module (without recompiling the kernel). Redhat provides such a module on its Linux
distributions with versions greater than 7.3. The IPv6 module is loaded by using the “modprobe”
command, e.g. modprobe IPv6, or by adding the following line to /etc/sysconfig/network
configuration file.

 “NETWORKING_IPV6=yes”

A Redhat system enters to the stateless mode by adding the following option in the
/etc/sysconfig/network-scripts/ifcfg-eth0 configuration file4:

“IPV6INIT=yes”

4 eth0 should be replaced with the current interface that one uses to connect to the Internet e.g. ppp0 if you use dial-up

IST-2001-32603
Deliverable D2.3.3-bis1

 134

This option forces the Redhat host to listen for router advertisement in order to set up the IPv6
interfaces.

In the stateful mode, the following modifications is required to the /etc/sysconfig/network-
scripts/ifcfg-eth0 configuration file:

“IPV6ADD = 3FFE:2D00:1::1 /10”

IST-2001-32603
Deliverable D2.3.3-bis1

 135

10. Appendix C: Survey of Deployed Transition Tools in 6NET
In March 2004 a survey was conducted with the 6NET participants to find out which migration
techniques where deployed and used at which 6NET partner sites.

The following three tables contain a summary of the results of this survey.

X: Mechanism is in active use (production or preproduction/pilot).

T: Mechanism either is or was tested.

H: Mechanism was used at some point but is not used any more.

10.1. Tunnelling

This table focuses on the use of transition mechanisms based on tunnelling. Most of these
techniques have been described in this document or in [D2.2.3].

.

6NET Partner v6inv4 6to4 ISATAP TB v4inv6 MPLS GRE VPN IPSec DSTM

CESNET H X H

DFN X X

ENST X

FCCN X X X

FUNET X X T

GARR X T

GRNET X X T

HUNGARNET X T X T

IBM X X

JOIN/WWU X T T X X

PSNC

SWITCH X X

UNINETT X X T H T T

ULanc X X H T

UoS X X T T T X T T

UTromsø X X H T X

IST-2001-32603
Deliverable D2.3.3-bis1

 136

10.2. Translation

6NET Partner TRT NAT-PT SOCKS ALGs: HTTP/FTP MAIL DNS

ENST T X X

FCCN T

FUNET X T X X X

GARR T

GRNET X X T

HUNGARNET T T T T T

IBM X X

JOIN/WWU T X T X T

UNINETT X X

ULanc T

UoS T T T T

Utromsø X T X X X X

10.3. Multicast

Institution/6NET Partner Trans. Mech. used in conjunction with IPv6 Multicast

ENST T (DSTM)

GARR T (46Bouncer)

HUNGARNET X (IPv6-in-IPv6/6PE tunnels)

JOIN/WWU H (IPv6-in-IPv4 tunnels)

IST-2001-32603
Deliverable D2.3.3-bis1

 137

11. References

[6TO4SEC] “Security Considerations for 6to4”, P. Savola, Internet Draft, draft- ietf-
v6ops-6to4-security-02.txt; March 2004.

[BIA] “Dual Stack Hosts Using ‘Bump in the API’ (BIA)”, S. Lee, M. Shin, Y.
Kim, E. Nordmark, A. Durand, RFC 3338; October 2002.

[CONSIDER] “Considerations for IPv6 Tunneling Solutions in Small End Sites”, T.
Chown, Internet Draft, draft-chown-v6ops-unmanaged-connectivity-00;
October 2003.

[D2.2.3] 6NET Deliverable 2.2.3: “Updated IPv4 to IPv6 transition Cookbook for
organisational/ISP (NREN) and backbone networks”; May 2004.

http://www.6net.org/publications/deliverables/D2.2.3.pdf
[D2.3.1] 6NET Deliverable 2.3.1: “Initial IPv4 to IPv6 scoping report for

end-site networks and universities”; July2002.

http://www.6net.org/publications/deliverables/D2.3.1.pdf
[D2.3.2] 6NET Deliverable 2.3.2: “Initial IPv4 to IPv6 transition Cookbook for

end-site networks and universities”; February 2003.

http://www.6net.org/publications/deliverables/D2.3.2.pdf

[D6.2.2] 6NET Deliverable 6.2.2: “Operational procedures for secured management
with transition mechanisms”; February 2003.

http://www.6net.org/publications/deliverables/D6.2.2.pdf

[DHCPv6] “Dynamic Host Configuration Protocol for IPv6”, Bound, Carney, Perkins,
Volz, Lemon, Droms (ed.), RFC 3315; July 2003.

[DSTM] “Dual Stack Transition Mechanism (DSTM)”, Bund, Toutain, Medina et al.,
Internet Draft; draft- ietf-ngtrans-dstm-08.txt; July 2002.

[DSTM_TSP] “DSTM Tunnel Setup using TSP”, Blanchet, Medina, Parent, Internet Draft,
draft-blanchet-ngtrans-tsp-dstm-profile-01; July 2002.

[DSTM_DHCPv6] “DSTM Ports Option for DHCPv6”, Myung-Ki Shin, Internet Draft, draft-
ietf-dhc-dhcpv6-opt-dstm-ports-00.txt; June 2002.

[DSTM_VPN] “DSTM in a VPN Scenario”, Richier, Medina, Toutain, Internet Draft, draft-
richier-dstm-vpn-00.txt; February 2002.

[ENST] ENST DSTM web site: http://www.ipv6.rennes.enst-bretagne.fr/dstm/.

[ENT-SCEN] “IPv6 Enterprise Network Scenarios”, J. Bound, Internet Draft, draft- ietf-
v6ops-ent-scenarios-01; November 2003.

[FAITH] “Translating IPv4 and IPv6 connections”, Yoshinobu Inoue, Jun-ichiro Itojun
Itoh, http://www.kame.net/newsletter/19981001/; January 17th 2003.

[IEEE-V6] “A scenario-based review of IPv6 Transition Tools”, M. Mackay, C.
Edwards, M. Dunmore, T. Chown, G. Carvalho, IEEE Internet Computing;
May/June 2003.

IST-2001-32603
Deliverable D2.3.3-bis1

 138

[ISATAP] “Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)“, F. Templin,
T. Gleeson, M. Talwar, D. Thaler, Internet Draft, draft- ietf-ngtrans- isatap-20;
February 2004.

[PARIS-IPV6] “Review of IPv6 Transition Scenarios for European Academic Networks”,
Conference Paper for “IPv6 Conference in Paris”, Tim Chown, Ming Feng,
Mike Saywell; October 2002.

[RENUMBER] “Procedures for Renumbering an IPv6 Network without a Flag Day”, F.
Baker, E. Lear, R. Droms, Internet Draft, draft- ietf-v6ops-renumbering-
procedure-00; February 2004.

[RFC1631] “The IP network Address Translator (NAT)”, K. Egevang, P. Francis, RFC
1631; May 1994.

[RFC1928] “SOCKS Protocol Version 5”, M. Leech, M. Ganis, Y. Lee, R. Kuris, D.
Koblas, L. Jones, RFC 1928; March 1996.

[RFC2365] “Administratively Scoped IP Multicast”, D. Meyer, RFC2365/BCP23; July
1998.

[RFC2529] “Transmission of IPv6 over IPv4 Domains without Explicit Tunnels”, B.
Carpenter, C. Jung, RFC 2529; March 1999.

[RFC2765] “Stateless IP/ICMP Translation Algorithm (SIIT)”, E. Nordmark, RFC 2765;
February 2000.

[RFC2766] “Network Address Translation - Protocol Translation (NAT-PT)”; Tsirtsis,
Srisuresh; RFC 2766; February 2000.

[RFC2767] “Dual Stack Hosts Using the ‘Bump-in-the-Stack’ Technique”, K. Tsuchiya,
H. Higuchi, Y. Atarashi, RFC 2767; February 2000.

[RFC3056] “Connection of IPv6 Domains via IPv4 Clouds”, B. Carpenter, K. Moore,
IETF RFC 3056; February 2001.

[RFC3068] “An Anycast Prefix for 6to4 Relay Routers”, C. Huitema, RFC 3068; June
2001.

[RFC3089] “A SOCKS-based IPv6/IPv4 Gateway Mechanism”. H. Kitamura, RFC 3089;
April 2001.

[RFC3142] “An IPv6-to-IPv4 Transport Relay Translator”, J. Hagino, K. Yamamoto,
RFC 3142; June 2001.

[TRANSSEC] “IPv6 Transition/Co-existence Security Considerations”, P. Savola, Internet
Draft, draft-savola-v6ops-security-overview-02; February 2004.

[STEP] “Simple IPv6- in-IPv4 Tunnel Establishment Procedure (STEP)”, P. Savola,
Internet Draft, draft-savola-v6ops-conftun-setup-02; January 2004

[TEREDO] “Teredo: Tunneling IPv6 over UDP through NATs”, draft-huitema-v6ops-
teredo-01.txt, C. Huitema; February 2004.

[TRANSARCH] “A View on IPv6 Transition Architecture”, P. Savola, Internet Draft, draft-
savola-v6ops-transarch-03; January 2004.

[TUNNEVAL] “Evaluation of v6ops Tunneling Scenarios and Mechanisms”, P. Savola,
Internet Draft, draft-savola-v6ops-tunneling-00; March 2004.

IST-2001-32603
Deliverable D2.3.3-bis1

 139

[USAGI] “USAGI (UniverSAl playGround for IPv6) Project – Linux IPv6
Development Project”, http://www.linux- ipv6.org/.

[V6OPS] IETF IPv6 Operations WG, http://www.ietf.org/html.charters/v6ops-
charter.html

[VLAN-ID] “Use of VLANs for IPv4-IPv6 Coexistence in Enterprise Networks”, T.
Chown, Internet Draft, draft-chown-v6ops-vlan-usage-00; October 2003

Some of these Internet Drafts did not reach RFC status and expired as an I-D. You may find some
of them in an archive, e.g. http://www.join.uni-muenster.de/drafts/ or http://www.watersprings.org/.

